Литий-ионные аккумуляторы для шуруповерта
Электролитом, в литий-ионных источниках, служит раствор солей лития в безводном апротонном растворе. Главной особенностью раствора является его свойство не создавать при распаде соединений, свободных положительных ионов водорода.
Анод выполняется из оксида кобальта, а катод из углеродистого материала — кокса или графита. Кристаллические решетки электродов позволяют ионам лития свободно внедряться в структуру и освобождаться из нее. Снятие зарядов с положительного электрода проводится через алюминиевый токосъемник, отрицательный токосъемник выполняется из медного листа.
Защита от возгорания лития при перезаряде или от короткого замыкания, выполняется дополнительными микросхемами-контроллерами.
Конструкция Li-Ion аккумуляторов
Вариант изготовления литий-ионных аккумуляторов может быть призматическим, цилиндрическим или в виде эллиптической спирали.
- Призматические элементы питания выполняют в виде стопки электродов, разделенных полипропиленовым сепаратором. Призматический ЭП имеет высокую плотность, но отличается низким сжимающим усилием.
- Для увеличения сжимающего усилия, воздействующего на электроды, применяют спиральную сборку в виде удлиненного эллипса. Сборка в виде эллиптической спирали позволяет сохранить плотность упаковки и поднять сжимающие усилие.
- Для цилиндрических элементов питания – электроды, проложенные сепаратором, сворачивают в рулон. Сепаратор изготавливается из пористого неэлектропроводного материала типа Celgard и пропитывается электролитом. Положительный токосъемник подключается к выводу на крышке элемента, отрицательный – к металлическому корпусу.
Собранная конструкция тщательно герметизируется, во избежание воздействия водяных паров или кислорода воздуха на электролит и электроды, что может привести к разрушению элемента питания.
Накопители энергии для шуруповерта собирают в основном, из нескольких цилиндрических ЭП соединяемых последовательно.
В конструкцию обязательно включается плата управления и контроля (СКУ).
Характеристики Li-Ion аккумуляторов
Значение технических показателей зависит от электрохимической схемы элемента питания.
- Максимальное напряжение отдельного элемента батареи, поддерживаемое платой защиты – до 4,2 В.
- Минимальное напряжение, допускаемое системой контроля – 2,5 В.
- Номинальное напряжение – 3,6 В.
- Энергетическая плотность – до 230 Вт×ч/кг.
- Количество циклов разряда/заряда до 20% потери емкости батареи – 2500÷ 4500.
- Внутреннее сопротивление – 6÷14 МОм/1 А×ч.
- Продолжительность заряда – 0,4÷1 ч.
- Безопасные для работы температуры – 0÷50 °C.
- Оптимально приемлемый ток нагрузки, относительно емкости – 1С.
- Импульсный ток нагрузки, относительно емкости – до 500С.
- Постоянный ток нагрузки, относительно емкости – 65 С.
- Величина саморазряда при 20÷25 °C – 3% емкости за месяц.
Параметры [ править | править код ]
- Теоретическая энергоёмкость: 237 Вт·ч/кг
- Удельная энергоёмкость: 45–65 Вт·ч/кг
- Удельная энергоплотность: 50–150 Вт·ч/дм³
- Удельная мощность: 150…500 Вт/кг
- ЭДС = 1,37 В
- Рабочее напряжение = 1,35…1,0 В
- Нормальный ток зарядки = 0,1…1 C, где С — ёмкость
- Срок службы: около 100—900 циклов заряда/разряда.
- Саморазряд: 10% в месяц
- Рабочая температура: −50…+40 °C
В настоящее время использование никель-кадмиевых аккумуляторов сильно ограничено по экологическим соображениям, поэтому они применяются только там, где использование других систем невозможно, а именно — в устройствах, характеризующихся большими разрядными и зарядными токами. Типичный аккумулятор для летающей модели можно зарядить за полчаса, а разрядить за пять минут. Благодаря очень низкому внутреннему сопротивлению аккумулятор не нагревается даже при зарядке большим током. Только когда аккумулятор полностью зарядится, начинается заметный разогрев, что и используется большинством зарядных устройств как сигнал окончания зарядки. Конструктивно все никель-кадмиевые аккумуляторы оснащены прочным герметичным корпусом, который выдерживает внутреннее давление газов в тяжёлых условиях эксплуатации.
Цикл разряда начинается с 1,35 В и заканчивается на 1,0 В (соответственно 100% ёмкости и 1% оставшейся ёмкости)
Электроды никель-кадмиевых аккумуляторов изготавливаются как штамповкой из листа, так и прессованием из порошка. Прессованные электроды более технологичны, дешевле в производстве и обладают более высокими показателями рабочей ёмкости, в связи с чем все аккумуляторы бытового назначения имеют прессованные электроды. Однако прессованные системы подвержены так называемому «эффекту памяти». Эффект памяти проявляется, когда аккумулятор подвергают зарядке раньше, чем он реально разрядится.
В электрохимической системе аккумулятора появляется «лишний» двойной электрический слой и его напряжение снижается на 0,1 В. Типичный контроллер устройства, использующего аккумулятор, интерпретирует это снижение напряжения как полный разряд батареи и сообщает, что батарея «плохая». Реального снижения энергоёмкости при этом не происходит, и хороший контроллер может обеспечить полное использование ёмкости аккумулятора. Тем не менее, в типичном случае контроллер побуждает пользователя выполнять всё новые и новые циклы зарядки. А это и приводит к тому, что пользователь своими руками, из лучших побуждений, «убивает» батарею. То есть можно сказать, что батарея выходит из строя не столько от «эффекта памяти» прессованных электродов, сколько от «эффекта беспамятства» недорогих контроллеров.
Бытовой никель-кадмиевый аккумулятор, разряжаемый и заряжаемый слабыми токами (например, в пульте дистанционного управления телевизора), быстро теряет ёмкость, и пользователь считает его вышедшим из строя. Так же и аккумулятор, длительное время стоявший на подзарядке (например, в системе бесперебойного питания) потеряет ёмкость, хотя его напряжение будет правильным. То есть использовать никель-кадмиевый аккумулятор в буферном режиме нельзя. Тем не менее, один цикл глубокой разрядки и последующая зарядка полностью восстановят ёмкость аккумулятора.
При хранении NiCd-аккумуляторы также теряют ёмкость, хотя и сохраняют выходное напряжение. Чтобы избежать неверной разбраковки при снятии аккумуляторов с хранения, рекомендуется хранить их в разряженном виде — тогда после первой же зарядки аккумуляторы будут полностью готовы к использованию. Для полной разрядки батареи и выравнивания напряжений на каждом разряжаемом элементе можно подключить цепочку из двух кремниевых диодов и резистора на каждый элемент, тем самым ограничив напряжение на уровне 1-1.1 В на элемент. При этом падение напряжения на каждом кремниевом диоде составляет 0,5–0,7 В, поэтому выбирать диоды для цепочки необходимо вручную, используя, например, мультиметр. После длительного хранения батареи необходимо провести два-три цикла заряд/разряд током, численно равным номинальной ёмкости (1C), чтобы она вошла в рабочий режим и работала с полной отдачей.
Li-on аккумуляторы работа зимой
зимой работать аккумуляторным инструментом можно без проблем, а оставлять на ночь в холодной бытовке нет.
Бытует мнение, что Li-on аккумуляторы нельзя использовать зимой. Знай это не правда. Работать можно . Только будь готов , что аккумулятор сядет быстрее. Насколько быстрее, но точно быстрее. По слухам разряд на морозе быстрее на 20%.
Виной тому – водосодержащий гель, который застывает и уменьшает реакцию ионов в ячейках.
Однако если батарею принести в тепло, ячейки отойдут и напряжение восстановится. Поэтому использовать шуруповерт в минус можно, батарея даже если замёрзнет – отойдет.
Что нужно знать о зарядке литий-ионных аккумуляторов
Это сложный процесс. Для каждого типа аккумуляторов существует своя стратегия, но в общих чертах она именуется CC-CV и состоит из двух основных стадий – зарядки постоянным током и растущим напряжением, затем дозарядки с постоянным напряжением. Также могут быть и дополнительные стадии, например, весь процесс может выглядеть так:
1. сначала батарея проверяется электроникой, чтобы узнать ее текущее состояние и степень заряда, а также пригодность к быстрому циклу зарядки. В первые минуты подается небольшое напряжение и невысокий ток. Если напряжение на батарее не растет (т.е. она хорошо принимает заряд), значит все в порядке, можно заряжать в быстром режиме;
2. затем идет основная фаза заряда, которая длится около часа, где постепенно повышается напряжение при неизменно высоком токе;
3. потом начинается завершающая фаза (дозарядка), где напряжение держится на максимально допустимом уровне (обычно 4,2 В), а ток постепенно снижается. Она может длится около двух часов.
Крайне важно для литий-ионных аккумуляторов – не допустить перезаряда. Он также негативно сказывается на ресурсе батареи, как и ее хранение в разряженном состоянии
Кроме того аккумулятор может банально перегреться и взорваться. Поэтому контроллер строго следит за этим процессом и прекращает заряд в соответствующий момент.
Но недобросовестные производители могут немного схитрить. Если незначительно повысить напряжение заряда (на 0,1 В, до 4,3 В), это чуть-чуть ускорит процесс, а главное – увеличит на 10% количество запасенной аккумулятором энергии. Последствия такого подхода отражает вот этот график:
Обратите внимание, что шкала ординат нелинейная, а сам график отражает лишь количество циклов перезаряда, при котором емкость аккумулятора снизится вдвое. И тут мы видим, что при напряжении 4,2 В аккумулятор деградирует крайне медленно, и количество циклов до момента «уполовинивания» емкости может быть около 1000
Но если напряжение повысить всего на 0,1 В, скорость деградации увеличится аж в четыре раза.
Ультрабыстрая зарядка
Обычно производитель рекомендует заряжать аккумуляторные элементы токами, равными 0,7 или 1 от емкости деленной на время (т.е. для аккумуляторного элемента 1500 мА·ч рекомендуемый ток заряда составляет 1,5 А). Некоторые производители допускают зарядку значительно большими токами, что в разы ускоряет процесс. Однако это приводит к ускоренной деградации батареи, плюс попутно приходится следить за ее температурой и останавливать процесс, если батарея нагрелась до 40 градусов (точное значение определяется производителем батареи). Ранний перегрев обычно характерен для стареющих батарей.
Вот график потери емкости литий-ионных аккумуляторов в зависимости от величины токов заряда и разряда:
Синяя линия – зарядка и разрядка токами, равными емкости/время (для аккумуляторов 1500 мА·ч – это 1,5 А). Зеленая – удвоенный ток заряда и разряда относительно емкости (для аккумуляторов 1500 мА·ч – 3 А). Красная – утроенный ток (для аккумуляторов 1500 мА·ч – 4,5 А).
Другими словами, режимы быстрой зарядки будут приводить к ускоренной деградации батареи.
Области применения [ править | править код ]
Малогабаритные никель-кадмиевые аккумуляторы используются в различной аппаратуре как замена стандартного гальванического элемента, особенно если аппаратура потребляет большой ток. Так как внутреннее сопротивление никель-кадмиевого аккумулятора на один-два порядка ниже, чем у обычных марганцево-цинковых и марганцево-воздушных батарей, мощность выдаётся стабильнее и без перегрева.
Никель-кадмиевые аккумуляторы применяются на электрокарах (как тяговые), трамваях и троллейбусах (для питания цепей управления), речных и морских судах. Широко применяются в авиации в качестве бортовых аккумуляторных батарей самолётов и вертолётов. Используются как источники питания для автономных шуруповёртов/винтовёртов и дрелей, однако здесь намечается тенденция к вытеснению их высокотоковыми батареями различных литиевых систем.
Несмотря на развитие других электрохимических систем и ужесточение экологических требований, никель-кадмиевые аккумуляторы остаются основным выбором для высоконадёжных устройств, потребляющих большую мощность, например фонарей для дайвинга.
Длительный срок хранения, относительная нетребовательность к постоянному уходу и контролю, способность стабильно работать на морозе до -40 °C и отсутствие возможности возгорания при разгерметизации в сравнении с литиевыми, малый удельный вес в сравнении со свинцовыми и дешевизна в сравнении с серебряно-цинковыми, меньшее внутренне сопротивление, большая надёжность и морозостойкость в сравнении с NiMH обуславливают по-прежнему широкое применение никель-кадмиевых аккумуляторов в военной технике, авиации и портативной радиосвязи.
Дисковые никель-кадмиевые аккумуляторы
Никель-кадмиевые аккумуляторы выпускаются также в герметичном «таблеточном» конструктиве, наподобие батареек для часов. Электроды в таком аккумуляторе — две прессованные тонкие таблетки из активной массы, сложенные в пакет с сепаратором и плоской пружиной и завальцованные в никелированный стальной корпус диаметром с монету. Используются для питания различных, в основном маломощных, нагрузок (током C/10-C/5). Допускают только небольшие зарядные токи, не более С/10, так как внутри корпуса должна успевать происходить рекомбинация выделяющихся газов. Благодаря замкнутой конструкции допускают длительный перезаряд с непрерывной рекомбинацией и выделением избыточной энергии в виде тепла. Напряжение такого аккумулятора ниже, чем у негерметичного, и мало изменяется в процессе разряда вследствие избытка активной массы катода, создаваемого с целью ускорения рекомбинации кислорода.
Дисковые аккумуляторы (как правило, в батареях по 3 шт. в общей оболочке, типоразмера аналогичного советскому Д-0,06) широко применялись в персональных компьютерах выпуска 1980–90 годов, в частности PC-286/386 и ранних 486, для питания энергонезависимой памяти настроек (CMOS NVRAM) и часов реального времени при отключенном сетевом питании. Срок службы аккумуляторов в таком режиме составлял несколько лет, после чего батарея, в большинстве случаев — впаянная в материнскую плату, подлежала замене. С развитием CMOS-технологии и уменьшением потребляемой мощности NVRAM и RTC аккумуляторы были вытеснены одноразовыми литиевыми элементами ёмкостью порядка 200 мА·ч (CR2032 и др.), устанавливаемыми в гнёзда-защёлки и легко заменяемыми пользователем, с аналогичным сроком непрерывной работы.
В СССР дисковые аккумуляторы были практически единственными доступными в широкой продаже аккумуляторами (кроме автомобильных и, позднее, NiCd размера AA на 450 мА·ч). Помимо отдельных элементов, предлагалась 9-вольтовая батарея из семи аккумуляторов Д-0,1 с разъёмом, аналогичным «Кроне», которая, однако, входила в отсек питания не у всех радиоприёмников, для которых предназначалась. Поставлялись только простейшие зарядные устройства с током С/10, заряжавшие аккумулятор или батарею примерно за 14 часов (время контролировалось пользователем).
Название аккумулятора | Диаметр, мм | Высота, мм | Напряжение, В | Ёмкость, А*ч | Рекомендуемый ток разряда, мА | Применение |
Д-0,03 | 11,6 | 5,5 | 1,2 | 0,03 | 3 | фотоаппараты, слуховые аппараты |
Д-0,06 | 15,6 | 6,4 | 1,2 | 0,06 | 12 | фотоаппараты, фотоэкспонометры, слуховые аппараты, дозиметры |
Д-0,125 | 20 | 6,6 | 1,2 | 0,125 | 12,5 | аккумуляторные электрические фонарики [ уточнить ] , миниатюрные радиоприёмники |
Д-0,26 | 25,2 | 9,3 | 1,2 | 0,26 | 26 | аккумуляторные электрические фонарики, фотовспышки, калькуляторы (Б3-36) |
Д-0,55 | 34,6 | 9,8 | 1,2 | 0,55 | 55 | прицел ночного видения 1ПН58 (блок из пяти Д-0.55С), фотовспышки, аккумуляторные электрические фонарики, калькуляторы (Б3-34) |
7Д-0,125 | 8,4 | 0,125 | 12,5 | замена батарее Крона |
Быстро разряжается аккумулятор шуруповерта? Не спешите менять, его можно восстановить за копейки!
Со временем аккумуляторы электроинструмента, или, к примеру, ноутбуков, выходят из строя, переставая держать заряд. У меня такое случалось, и не раз – пришлось делать ремонт аккумулятору шуруповерта и ноутбука. Несмотря на совершенно разные предназначения приборов, аккумуляторы у них выполнены по одному принципу.
Наверное, некоторые не знают, но аккумулятор – это не монолитная штука, он состоит из нескольких элементов – «банок», которые собраны последовательно, и именно в них все и дело. Если одна из банок выходит из строя – вся цепь не работает. Сразу все банки выйти из строя не могут, по крайней мере мне такие случаи не известны.
К примеру, в ноутбуке из 5 банок вышли из строя две, в шуруповерте – одна из 12.
Аккумуляторы, как правило, состоят из следующих видов элементов:
1. Никель-кадмиевые (Ni – Cd)
с напряжением в 1,2 V. Устаревший тип, производство вредное, потому не производиться в Европе. Из плюсов: низкая стоимость, стойкость к низким температурам, возможность хранения в разряженном состоянии. Из минусов: эффект памяти, саморазряд, небольшая емкость и малый срок службы.
Как правильно заряжать аккумулятор
Правильный подход к заряжанию аккумуляторов позволяет значительно продлить срок службы АКБ. У каждого типа батарей есть свои требования.
В первый раз после покупки
Аккумуляторы, идущие в комплекте с шуруповертом, продают в частично заряженном состоянии. Возможно, их и зарядили полностью, но на какую величину снизился запас энергии во время хранения за счет эффекта саморазряда, неизвестно. Литий-ионный аккумулятор заряжать можно сразу, чтобы батарея была в полной готовности к работе. Никель-кадмиевую батарею надо сначала разрядить до начала падения оборотов вала шуруповерта, и потом зарядить полностью. Это поможет избежать потери емкости. Таким же образом желательно поступить и с NiMH АКБ, хотя у нее эффект памяти выражен не столь отчетливо.
На каком этапе разряда подключить зарядку
В большинстве случаев шуруповерт сам подскажет, когда надо возобновить энергию батарей. При разряженной АКБ падают обороты вала и уменьшается вращающий момент, работать становится невозможно и потребуется заменить аккумулятор на заряженный. До глубокого разряда дело в такой ситуации не дойдет.
Индикация уровня остаточного заряда на шуруповерте от китайского бренда Deco.
Многие шуруповерты имеют индикатор уровня заряда батареи. Можно ориентироваться на него. Но такие системы довольно грубы и нелинейны, поэтому их можно использовать для очень приблизительной оценки состояния остаточной энергии. Если батарея литий-ионная, то заряжать ее можно в любое время с любого уровня.
Сколько по времени заряжать
Время заряжания аккумуляторов может быть различным. Оно зависит:
- от степени разряда элементов;
- от текущей фактической емкости АКБ;
- от зарядного тока – большим током батарея зарядится быстрее.
Фактическая емкость батареи никогда неизвестна (ее можно замерить контрольным разрядом, но реально это бессмысленно). В процессе эксплуатации она изменяется от заявленного производителем максимума (у новой АКБ) до практического нуля (в конце срока работы). Уровень остаточного заряда в процентах также точно определить невозможно (его можно лишь косвенно оценить по фактическому напряжению). По этим причинам контролировать заряд по времени не получится. Можно лишь говорить о том, что глубоко разряженный новый аккумулятор при одинаковом токе заряжается дольше слегка разряженного старого. Для окончания заряжания и отключения ЗУ используются другие критерии:
- повышение напряжения на элементе до установленного значения;
- снижение зарядного тока ниже установленного значения.
Существуют и другие способы определения окончания процесса зарядки.
Li-ion батарея в процессе зарядки – горит красный индикатор.
Зарядка закончена, горит зеленый индикатор.
Для NiMH элементов при заряжании большим током в конце процесса наблюдается эффект снижения напряжения на элементе. Это явление можно использовать в качестве сигнала выключения зарядного устройства. Также можно контролировать процесс по снижению скорости нарастания напряжения в конце заряжания, но этот метод требует точного измерения напряжения и применения микроконтроллеров для математических вычислений.
Зарядная характеристика никель-металлогидридного аккумулятора (на графике напряжения виден участок с замедлением роста напряжения и с уменьшением напряжения по окончании заряжания)
Рекомендуем к просмотру тематическое видео.
Общие правила зарядки АКБ
Чтобы правильно заряжать аккумулятор шуруповерта, должен быть обеспечен определенный внешний температурный режим. Оптимальной считается температура воздуха от 10 до 40 градусов. Нежелательным моментом является возможный перегрев блока батарей во время накопления заряда. Чтобы избежать возможных негативных последствий такого явления, необходимо аккумулятор отсоединять для охлаждения от зарядного устройства.
Не рекомендуется после того, как батареи наберут полную емкость, оставлять их в отключенном зарядном устройстве или вставлять в шуруповерт, который затем не будет использоваться, лучше укладывать в кейс из-под инструмента.
Рекомендуемое время зарядки АКБ составляет от 30 минут до 7 часов и зависит от ее типа. Для конкретной модели электроинструмента оно указывается в эксплуатационной инструкции. Эти указания следует точно выполнять, чтобы изделие прослужило долго. Большинство зарядных устройств оснащены индикаторами, показывающими, на каком этапе находится процесс. В таких случаях по загоранию светодиодов определенного цвета не составляет труда определить, сколько точно нужно заряжать элементы питания. После достижения полного уровня емкости нужно сразу прекратить процесс.
Что делать, если аккумулятор не заряжается
Если вышеперечисленные методы не помогли, то рекомендуем ознакомиться со следующими способами как оживить аккумулятор 18650.
С помощью специального зарядного устройства
Это действие осуществляется при помощи китайской копии зарядного устройства «IMAX B6» и мультиметра. Эта зарядка доступна в широкой продаже, и она отлично восстанавливает аккумулятор в домашних условиях.
Для начала необходимо проверить саму батарею, путем соединения к ней мультиметра и выставляя устройство в режим измерения напряжения. Если у аккумулятора глубокий разряд, мультиметр покажет низкие показателями U в милливольтах.
Суть метода заключается в том, чтобы измерение реального количества U в аккумуляторе «мешает» контроллер.
Есть два вывода, плюс и минус, которые идут непосредственно с батареи на контроллер. На выводах чаще всего напряжение составляет 2,6 В это достаточно небольшое значение.
Напряжение будет по немногу подниматься. Это значит, что восстановление li ion аккумулятора идёт успешно. Через какое-то время значение U дойдет до 3,2 вольт, и батарея начнет «раскачиваться». Позже её можно будет заряжать от «родной» зарядки.
С помощью резистора и «родного» ЗУ
Этот способ еще более проще осуществить, чем предыдущий. Здесь необходимо «минус» подзарядки подвести к «минусу» аккумулятора. А «плюс» вывести путем резистора на «плюс» батареи.
После этого следует подать питание и напряжение будет возрастать.
Его можно поднять до 3В, для достижения этого показателя, нужно процедуру провести в течении пятнадцати минут. Как только метод завершен, аккумулятор можно проверить на работоспособность.
С помощью вентилятора
Чтобы осуществить этот метод нам понадобится блок питания, в котором выходное напряжение было минимум 12В. «Минус» вентилятора следует подсоединить к «минусовом» разъему блока питания, а его «плюсовой» к плюсу и обязательно фиксировать вручную на аккумуляторе.
Когда мы включим устройство, вентилятор начнет работать. Это значит, что в батарее уже идёт ток. Процедуру не стоит долго продолжать, где-то через 30 секунд нужно выключить сеть. После такого восстановления напряжение обычно повышается до 3В.
Восстановление 18650 аккумуляторов при помощи подзарядки от другого аккумулятора
Существует способ как реанимировать литий-ионную батарею с помощью другого автомобильного аккумулятора. Для этого нам нужна любая другая батарея на 9 В, скотч, а также тонкий провод.
Метод осуществляется по следующим этапам:
- Проводки требуется подвести к контактам батареи, которую мы хотим реанимировать. На каждый контакт провод должен быть отдельным.
- Нельзя замыкать контакты «плюс» и «минус» лишь одним проводом. Из-за этого может произойти короткое замыкание, и оживить батарею будет нельзя.
- Соединения нужно закрепить скотчем, на которой перед этим необходимо сделать метку маркером, какой провод с каким контактом будет соединён.
- Провод от «плюса» девятивольтового аккумулятора следует соединить с «плюсом» восстанавливаемой батареи.
- Минусовые контакты надо соединить по этому же методу.
- Все контакты закрепляем изолентой, чтобы провода не отошли.
- Ждём определенное время и следим за состоянием батареи, она должна минимально нагреться.
- Когда аккумулятор станет тёплым, сразу же отсоединяем от АКБ батареи.
- Проводим перезарядку.
- Проверяем работу.
С помощью использования тренировочных циклов
Этот метод проводится для предотвращения сульфатации, а также для того чтобы определить емкости батареи. Такие циклы нужно проводить минимум один раз в год и процедура выполняется по следующим этапам:
- Следует зарядить литий-ионный аккумулятор обычным током до того момента, пока он полностью не зарядится.
- Выдерживаем ее четыре часа после того как прекратилось питания.
- Корректируем плотность электролита.
- Включаем заряд на 25-35 минут чтобы электролит был перемешенным.
- Необходимо провести контрольную разрядку постоянным нормальным током десяти-часового режима и контролировать время полного разряда до того как напряжение спадет до 1,7 В на банку
- Емкость батареи можно определить как уровень разрядного тока умноженный на время разряда.
- После того, как контрольный разряд осуществлён необходимо сразу же полностью разрядить аккумулятор. Если получилось так, что емкость не заряжается аккумулятор 18650 скорее всего уже не починить.
Основные минусы данного метода:
- Сокращается срок службы.
- Долгое время восстановления литий-ионных аккумуляторов.
- Огромные затраты энергии.
- Маленькая эффективность способа.
Ni Mh (Никель металл гидридный аккумулятор)
Появились после Ni – CD, избавлены от токсичных материалов, разрабатывались с учетом недостатков nicd
- Разряжена 0.9 — 1v
- Стандартное напряжение 1.2v
- Полностью заряжена 1.5 – 1.8v
- Устойчивость к перезаряду — слабая
Могут сохранять работоспособность от – 40 до + 50 градусов по цельсию Возможна зарядка, при отрицательных температурах
Количество циклов перезарядки от 300 — 500, до 1000, в зависимости от используемой технологии и компонентов
Емкость больше до 20% процентов
Эффект памяти, как у кадмиевых отсутствует
Уровень саморазряда больше до 2 раз
При низких температурах скорость заряда необходимо снижать