Самый тугоплавкий металл в мире — свойства, получение, применение
Определение «тугоплавкие металлы» не требует дополнительных пояснений в силу исчерпывающей информативности самого термина. Единственным нюансом остается пороговая температура плавления, после которой вещество можно считать тугоплавким.
Где применяется вольфрам?
Широко используют соединения вольфрама. Их применяют в машиностроительной и горнодобывающей промышленностях, для бурения скважин. Из данного металла благодаря его высокой прочности и твердости изготавливают детали двигателей летательных аппаратов, нити накаливания, артиллерийские снаряды, сверхскоростные роторы гироскопов, пули и т.д. Также вольфрам успешно применяется как электрод при аргонно-дуговой сварке. Не обходятся и такие отрасли промышленности без соединений вольфрама – текстильная, лакокрасочная.
Определение
Большинство определений термина тугоплавкие металлы
определяют их как металлы имеющие высокие температуры плавления. По этому определению, необходимо, чтобы металлы имели температуру плавления выше 4,000°F (2,200°C ). Это необходимо для их определения как тугоплавких металлов.
Пять элементов — ниобий, молибден, тантал, вольфрам и рений входят в этот список как основные, в то время как более широкое определение этих металлов позволяет включить в этот список ещё и элементы имеющие температуру плавления 2123 K (1850 °C) — титан, ванадий, хром, цирконий, гафний, рутений и осмий.
Трансурановые элементы (которые находятся за ураном, все изотопы которых нестабильны и на земле их найти очень трудно) никогда не будут относиться к тугоплавким металлам.
Сравнительная таблица степени тугоплавкости чистых металлов
Следует отметить, что тугоплавкие материалы не ограничиваются исключительно металлами. К этой категории относится ряд соединений – сплавы и легированные металлы, разработанных, чтобы улучшить определенные характеристики исходного материала.
Относительно чистых элементов, можно привести наглядную таблицу степени их температурной устойчивости. Возглавляет ее самый тугоплавкий металл, известный на сегодня, – вольфрам с температурой плавления 3422 0С. Такая осторожная формулировка связана с попытками выделить металлы, обладающие порогом расплава, превосходящим вольфрам.
Поэтому вопрос, какой металл самый тугоплавкий, может в будущем получить совсем иное определение.
Пороговые величины остальных соединений приведены ниже:
- рений 3186;
- осмий 3027;
- тантал 3014;
- молибден 2623;
- ниобий 2477;
- иридий 2446;
- рутений 2334;
- гафний 2233;
- родий 1964;
- ванадий 1910;
- хром 1907;
- цирконий 1855;
- титан 1668.
Остается добавить еще один интересный факт, касающийся физических свойств жапропрочных элементов. Температура плавления некоторых из них чувствительная к чистоте материала. Ярким примером этому выступает хром, температура плавления которого может варьироваться от 1513 до 1920 0С, в зависимости от химического состава примесей. Поэтому, данные интернет пространства часто разнятся точными цифрами, однако качественная составляющая от этого не страдает.
Хром в чистом виде
Свойства самых тугоплавких металлов
Так самый тугоплавкий металл в мире (вольфрам) обычно легируется рением, торием, никелем при участии меди и/или железа. Первый делает сплав более коррозионстойким, второй — более надежным, а третий — придает небывалую плотность
Следует обратить внимание, что во всех сплавах вольфрама содержится не более 4/5
Из-за того, что вольфрам одновременно и твердый, и тугоплавкий его обычно применяют в электроснабжении, строении приборов, изготовлении оружия, снарядов, боеголовок и ракет. Более плотные сплавы (на базе никеля) применяют для производства клюшек для игры в гольф. Вольфрам образует и так называемые псевдосплавы. Дело в том, что в них металл не легируется, а наполняется жидким серебром или медью.
За счет разницы в температурах расплава получаются лучшие тепло и электропроводные свойства.
Это дает возможность использовать его для изготовления форм для литья цинковых деталей. Особое направления использования молибдена — в качестве легирующего элемента в стальных сплавах. Сплавы сталь+молибден обладают хорошей износостойкостью и невысокими показателями трения.
Сталь+молибден применяют в для изготовления труб, трубных конструкций, автомобиле и машиностроении.
Поставщик
Вас интересуют добыча и общие сведения о редких и тугоплавких металлов? Добыча и общие сведения о редких и тугоплавких металлов на сайте поставщика «Ауремо» изложены наиболее полно. Поставщик «Ауремо» предлагает сплавы редких и тугоплавких металлов на выгодных условиях. Большой выбор на складе. Оптимальная цена от поставщика. Для оптовых заказчиков — цена льготная. Купить тугоплавкие металлы оптом или в рассрочку.
Купить, выгодная цена
Поставщик «Ауремо» является признанным экспертом на рынке металлов. Благодаря представительствам в Восточной Европе, мы имеем возможность оперативного взаимодействия с торговыми партнёрами. Опыт позволит Вам купить любой металл. В ассортимент жаропрочные сплавы, легированная сталь, конструкционные сплавы. У нас легко купить тугоплавкие сплавы по льготной цене. — надёжный поставщик металлопроката приглашает всех к партнёрскому сотрудничеству. У нас наилучшее соотношение цены и качества. Оптовым заказчикам — цена льготная. Вся продукция сертифицирована. Курьерская служба доставит заказ в кратчайший срок. Лучшая цена от поставщика.
Приложения
Электроника
Танталовый электролитический конденсатор
В основном тантал в виде металлического порошка используется в производстве электронных компонентов, в основном конденсаторов и некоторых мощных резисторов . Танталовые электролитические конденсаторы используют тенденцию тантала к образованию защитного оксидного поверхностного слоя с использованием танталового порошка, спрессованного в форму таблетки, в качестве одной «пластины» конденсатора, оксида в качестве диэлектрика и электролитического раствора или проводящего твердого вещества в качестве другая “тарелка”. Поскольку диэлектрический слой может быть очень тонким (тоньше, чем аналогичный слой, например, в алюминиевом электролитическом конденсаторе), высокая емкость может быть достигнута в небольшом объеме. Из-за преимуществ в размере и весе танталовые конденсаторы привлекательны для портативных телефонов , персональных компьютеров , автомобильной электроники и фотоаппаратов .
Сплавы
Тантал также используется для производства различных сплавов с высокими температурами плавления, прочностью и пластичностью. Легированный другими металлами, он также используется в производстве твердосплавных инструментов для металлообрабатывающего оборудования и в производстве суперсплавов для компонентов реактивных двигателей, химического технологического оборудования, ядерных реакторов , деталей ракет, теплообменников, резервуаров и сосудов. Из-за своей пластичности тантал можно втянуть в тонкую проволоку или нити, которые используются для испарения металлов, таких как алюминий . Поскольку тантал устойчив к воздействию жидкостей организма и не вызывает раздражения, он широко используется при изготовлении хирургических инструментов и имплантатов. Например, пористые танталовые покрытия используются при изготовлении ортопедических имплантатов из-за способности тантала образовывать прямую связь с твердой тканью.
Тантал инертен по отношению к большинству кислот, за исключением плавиковой кислоты и горячей серной кислоты , а горячие щелочные растворы также вызывают коррозию тантала. Это свойство делает его полезным металлом для химических реакционных сосудов и труб для агрессивных жидкостей. Теплообменные змеевики для парового нагрева соляной кислоты изготовлены из тантала. Тантал широко использовался в производстве сверхвысокочастотных электронных ламп для радиопередатчиков. Тантал способен улавливать кислород и азот, образуя нитриды и оксиды, и поэтому помогает поддерживать высокий вакуум, необходимый для трубок, когда они используются для внутренних деталей, таких как решетки и пластины.
Другое использование
Биметаллические монеты отчеканены Банком Казахстана с серебряным кольцом и танталовым центром. В них есть Аполлон-Союз и Международная космическая станция.
Высокая температура плавления и стойкость к окислению позволяют использовать этот металл в производстве деталей вакуумных печей . Тантал чрезвычайно инертен и поэтому образует множество коррозионно-стойких деталей, таких как защитные гильзы , корпуса клапанов и танталовые крепежные детали. Из-за его высокой плотности кумулятивный заряд и гильзы пенетратора, образованные взрывчаткой , были изготовлены из тантала. Тантал значительно увеличивает бронепробиваемость кумулятивного заряда из-за его высокой плотности и высокой температуры плавления. Он также иногда используется в драгоценных часах, например, от Audemars Piguet , FP Journe , Hublot , Montblanc , Omega и Panerai . Тантал также очень биоинертен и используется в качестве материала для ортопедических имплантатов. Высокая жесткость тантала заставляет использовать его в качестве высокопористой пены или каркаса с меньшей жесткостью для имплантатов для замены тазобедренного сустава, чтобы избежать защиты от напряжений . Поскольку тантал является цветным немагнитным металлом, эти имплантаты считаются приемлемыми для пациентов, проходящих процедуры МРТ. Оксид используется для изготовления специальных стекол с высоким показателем преломления для объективов фотоаппаратов .
Хром
Хром — уникальный металл. Широко применяется в промышленности благодаря своим замечательным свойствам: прочности, устойчивости к внешним воздействиям (нагреву и коррозии), пластичности. Достаточно твердый, но хрупкий металл. Имеет серо-стальной цвет. Весь необходимый хром извлекают из руды двух видов хромита железа или окиси хрома.
Основными его свойствами являются:
- Даже при нормальной температуре обладает почти идеальным антиферромагнитным упорядочением. Это придаёт ему отличные магнитные свойства.
- По-разному реагирует на воздействие водорода и азота. В первом случае сохраняет свою прочность. Во втором, становится хрупким и полностью теряет все свои пластические свойства.
- Обладает высокой устойчивостью против коррозии. Это происходит благодаря тому, что при взаимодействии с кислородом на поверхности образуется тонкая защитная плёнка. Она служит для защиты от дальнейшей коррозии.
Кристаллы хрома
Он используется в металлургической, химической, строительной индустриях. Хром, как легирующая добавка, обязательно используется для производства различных марок нержавеющей стали. Особое место занимает при изготовлении такого материала как нихром. Этот материал способен выдерживать очень высокие температуры. Поэтому его используют в различных нагревательных элементах. Хромом активно покрывают поверхности различных деталей (металла, дерева, кожи). Это процесс осуществляется с помощью гальваники.
Токсичность некоторых солей хрома используют для сохранения древесины от повреждения, вредного воздействия грибков и плесени. Они также хорошо отпугивают муравьёв, термитов, насекомых разрушителей деревянных конструкций. Солями хрома обрабатывают кожу. Хром применяется при изготовлении различных красителей.
Благодаря высокой теплостойкости его используют как огнеупорный материал для доменных печей. Каталитические свойства соединений хрома успешно используют при переработке углеводородов. Его добавляют при производстве магнитных лент наивысшего качества. Именно он обеспечивает низкий коэффициент шума и широкую полосу пропускания.
Самый тугоплавкий металл в мире — свойства, получение, применение
Определение «тугоплавкие металлы» не требует дополнительных пояснений в силу исчерпывающей информативности самого термина. Единственным нюансом остается пороговая температура плавления, после которой вещество можно считать тугоплавким.
Где применяется вольфрам?
Широко используют соединения вольфрама. Их применяют в машиностроительной и горнодобывающей промышленностях, для бурения скважин. Из данного металла благодаря его высокой прочности и твердости изготавливают детали двигателей летательных аппаратов, нити накаливания, артиллерийские снаряды, сверхскоростные роторы гироскопов, пули и т.д. Также вольфрам успешно применяется как электрод при аргонно-дуговой сварке. Не обходятся и такие отрасли промышленности без соединений вольфрама – текстильная, лакокрасочная.
Определение
Большинство определений термина тугоплавкие металлы
определяют их как металлы имеющие высокие температуры плавления. По этому определению, необходимо, чтобы металлы имели температуру плавления выше 4,000°F (2,200°C ). Это необходимо для их определения как тугоплавких металлов.
Пять элементов — ниобий, молибден, тантал, вольфрам и рений входят в этот список как основные, в то время как более широкое определение этих металлов позволяет включить в этот список ещё и элементы имеющие температуру плавления 2123 K (1850 °C) — титан, ванадий, хром, цирконий, гафний, рутений и осмий.
Трансурановые элементы (которые находятся за ураном, все изотопы которых нестабильны и на земле их найти очень трудно) никогда не будут относиться к тугоплавким металлам.
Сравнительная таблица степени тугоплавкости чистых металлов
Следует отметить, что тугоплавкие материалы не ограничиваются исключительно металлами. К этой категории относится ряд соединений – сплавы и легированные металлы, разработанных, чтобы улучшить определенные характеристики исходного материала.
Относительно чистых элементов, можно привести наглядную таблицу степени их температурной устойчивости. Возглавляет ее самый тугоплавкий металл, известный на сегодня, – вольфрам с температурой плавления 3422 0С. Такая осторожная формулировка связана с попытками выделить металлы, обладающие порогом расплава, превосходящим вольфрам.
Поэтому вопрос, какой металл самый тугоплавкий, может в будущем получить совсем иное определение.
Пороговые величины остальных соединений приведены ниже:
- рений 3186;
- осмий 3027;
- тантал 3014;
- молибден 2623;
- ниобий 2477;
- иридий 2446;
- рутений 2334;
- гафний 2233;
- родий 1964;
- ванадий 1910;
- хром 1907;
- цирконий 1855;
- титан 1668.
Остается добавить еще один интересный факт, касающийся физических свойств жапропрочных элементов. Температура плавления некоторых из них чувствительная к чистоте материала. Ярким примером этому выступает хром, температура плавления которого может варьироваться от 1513 до 1920 0С, в зависимости от химического состава примесей. Поэтому, данные интернет пространства часто разнятся точными цифрами, однако качественная составляющая от этого не страдает.
Хром в чистом виде
Свойства самых тугоплавких металлов
Так самый тугоплавкий металл в мире (вольфрам) обычно легируется рением, торием, никелем при участии меди и/или железа. Первый делает сплав более коррозионстойким, второй — более надежным, а третий — придает небывалую плотность
Следует обратить внимание, что во всех сплавах вольфрама содержится не более 4/5
Из-за того, что вольфрам одновременно и твердый, и тугоплавкий его обычно применяют в электроснабжении, строении приборов, изготовлении оружия, снарядов, боеголовок и ракет. Более плотные сплавы (на базе никеля) применяют для производства клюшек для игры в гольф. Вольфрам образует и так называемые псевдосплавы. Дело в том, что в них металл не легируется, а наполняется жидким серебром или медью.
За счет разницы в температурах расплава получаются лучшие тепло и электропроводные свойства.
Это дает возможность использовать его для изготовления форм для литья цинковых деталей. Особое направления использования молибдена — в качестве легирующего элемента в стальных сплавах. Сплавы сталь+молибден обладают хорошей износостойкостью и невысокими показателями трения.
Сталь+молибден применяют в для изготовления труб, трубных конструкций, автомобиле и машиностроении.
Предсказание температуры плавления (критерий Линдемана)[править | править код]
Попытка предсказать точку плавления кристаллических материалов была предпринята в 1910 году Фредериком Линдеманом (англ.). Идея заключалась в наблюдении того, что средняя амплитуда тепловых колебаний увеличивается с увеличением температуры. Плавление начинается тогда, когда амплитуда колебаний становится достаточно большой для того, чтобы соседние атомы начали частично занимать одно и то же пространство.
Критерий Линдемана утверждает, что плавление ожидается, когда среднеквадратическое значение амплитуды колебаний превышает пороговую величину.
Температура плавления кристаллов достаточно хорошо описывается формулой Линдемана:
где – средний радиус элементарной ячейки, – температура Дебая, а параметр для большинства материалов меняется в интервале 0,15-0,3.
Температура плавления – расчёт
Формула Линдемана выполняла функцию теоретического обоснования плавления в течение почти ста лет, но развития не имела из-за низкой точности.
Ниобий и его сплавы
Nb, или ниобий, — при обычных условиях серебристо-белый блестящий металл. Он также является тугоплавким, поскольку температура перехода в жидкое состояние для него составляет 2477 оС. Именно это качество, а также сочетание низкой химической активности и сверхпроводимости позволяет ниобию становиться все более популярным в практической деятельности человека с каждым годом. Сегодня этот металл используется в таких отраслях, как:
- ракетостроение;
- авиационная и космическая промышленность;
- атомная энергетика;
- химическое аппаратостроение;
- радиотехника.
Этот металл сохраняет свои физические свойства даже при очень низких температурах. Изделия на его основе отличаются коррозионной устойчивостью, жаростойкостью, прочностью, отличной проводимостью.
Этот металл добавляют к алюминиевым материалам для повышения химической стойкости. Из него изготовляют катоды и аноды, им легируют цветные сплавы. Даже монеты в некоторых странах делают с содержанием ниобия.
Список и характеристики тугоплавких металлов
Тугоплавкость характеризуется повышенным значением температуры перехода из твердого состояния в жидкую фазу. Металлы, плавление которых осуществляется при 1875 ºC и выше, относят к группе тугоплавких металлов. По порядку возрастания температуры плавки сюда входят следующие их виды:
- Ванадий
- Хром
- Родий
- Гафний
- Рутений
- Вольфрам
- Иридий
- Тантал
- Молибден
- Осмий
- Рений
- Ниобий.
Современное производство по количеству месторождений и уровню добычи удовлетворяют только вольфрам, молибден, ванадий и хром. Рутений, иридий, родий и осмий встречаются в естественных условиях довольно редко. Их годовое производство не превышает 1,6 тонны.
Жаропрочные металлы обладают следующими основными недостатками:
- Повышенная хладноломкость. Особенно она выражена у вольфрама, молибдена и хрома. Температура перехода у металла от вязкого состояния к хрупкому чуть выше 100 ºC, что создает неудобства при их обработке давлением.
- Неустойчивость к окислению. Из-за этого при температуре свыше 1000 ºC тугоплавкие металлы применяются только с предварительным нанесением на их поверхность гальванических покрытий. Хром наиболее устойчив к процессам окисления, но как тугоплавкий металл он имеет самую низкую температуру плавления.
К наиболее перспективным тугоплавким металлам относят ниобий и молибден. Это связано с их распространённостью в природе, а, следовательно, и низкой стоимостью в сравнении с другими элементами данной группы.
Помимо этого, ниобий зарекомендовал себя как металл с относительно низкой плотностью, повышенной технологичностью и довольно высокой тугоплавкостью. Молибден ценен, в первую очередь, своей удельной прочностью и жаростойкостью.
Виды и области применения
Благодаря своим уникальным качествам тугоплавкие металлы очень полезны для различных областей применения и отраслей. Их основные преимущества:
- Сверхвысокая точка плавления. В частности, к тугоплавким металлам относятся вольфрам, молибден и тантал, которые применяются при производстве стекла;
- Прочность при сверхвысоких температурах. Например, конусы ракет, сделанные из вольфрама, имеют вдвое большую прочность на разрыв, чем железо при нормальных температурах;
- Превосходная стойкость к истиранию и износу, что позволяет продлить срок службы седел клапанов, уплотнений, форсунок и других участков, подверженных сильному износу;
- Отличная коррозионная стойкость, поэтому особо ответственные трубопроводы на химических предприятиях обычно изготавливаются из тугоплавких металлов;
- Устойчивость к тепловому удару. В частности, вольфрамовые изделия могут противостоять нагрузкам, вызванным быстрым расширением из-за резких перепадов температуры;
- Тепловая и электрическая проводимость, вследствие чего из вольфрама и молибдена изготавливают детали радиаторов;
- Чрезвычайная твердость, поэтому высокостойкий режущий штамповый и бурильный инструмент производят из карбида вольфрама;
- Высокая плотность тугоплавких металлов – причина их применения при изготовлении головок клюшек для гольфа и авиационных гироскопов.
Кроме того, эти материалы используются в качестве катализаторов химических реакций, при процессах ядерного синтеза и т.д.
К тугоплавким металлам относятся получившие особое распространение вольфрам, молибден, ниобий, тантал, рений и хром. Об особенностях их применения – далее.
Вольфрам
Вольфрам — самый распространенный среди тугоплавких металлов. Он имеет самую высокую температуру плавления и одну из самых высоких плотностей. Обладает также высокой устойчивостью к коррозии. Широко используется в проволочных волокнах, например, в большинстве ламп накаливания, используемых в домах, а также в промышленных дуговых лампах и прочей технике для освещения.
Молибден
Молибден — наиболее используемый тугоплавкий металл из всех, потому что он дешевле, чем большинство других, и, когда он превращен в сплав, может быть очень устойчивым к ползучести и высоким температурам. Он также не образует амальгам, что делает его устойчивым к коррозии.
Молибден используется для упрочнения стальных сплавов, особенно в конструкционных трубопроводах и насосно-компрессорных трубах. Этот металл также обладает отличными антифрикционными качествами, что делает его идеальным компонентом масел и смазок, используемых в автомобилях.
Ниобий
Обладает оптимальным сочетанием пластичности и прочности. Его можно использовать при изготовлении электролитических конденсаторов, сверхпроводников, ядерных реакторов и электронных ламп.
Тантал
Более других устойчив к коррозии, поэтому находит применение в медицине (особенно – хирургии), а также в средах с повышенной кислотностью. Тантал также является основным компонентом компьютерных, телефонных и конденсаторных цепей.
Рений
Известен своей высокой прочностью на разрыв и пластичностью. Он широко используется в ядерных реакторах, гироскопах и других электрических компонентах. Из-за своей редкости рений очень дорог. Понятие коррозионной стойкости особенно актуально именно для рения, потому что он очень летуч. Может терять устойчивость к воздействию кислорода при высоких температурах, поскольку оксидный слой активно испаряется.
Классификация
В зависимости от температуры плавления тугоплавкие металлы причисляются к основной либо дополнительной группе.
Основная группа
Данный сегмент включает пять позиций: вольфрам, ниобий, тантал, молибден, рений. Плавятся при 2200°С+.
Название | Ниобий | Молибден | Тантал | Вольфрам | Рений |
---|---|---|---|---|---|
Температура плавления | 2750 K (2477 °C) | 2896 K (2623 °C) | 3290 K (3017 °C) | 3695 K (3422 °C) | 3459 K (3186 °C) |
Температура кипения | 5017 K (4744 °C) | 4912 K (4639 °C) | 5731 K (5458 °C) | 5828 K (5555 °C) | 5869 K (5596 °C) |
Плотность | 8,57 г·см³ | 10,28 г·см³ | 16,69 г·см³ | 19,25 г·см³ | 21,02 г·см³ |
Модуль Юнга | 105 ГПа | 329 ГПа | 186 ГПа | 411 ГПа | 463 ГПа |
Твёрдость по Виккерсу | 1320 МПа | 1530 МПа | 873 МПа | 3430 МПа | 2450 МПа |
Молибден
Самый востребованный из тугоплавких элементов.
Сфера использования номер один – металлургия:
- Молибденом «усиливают» сталь, чтобы получить твердый сплав.
- На пару с нержавеющей сталью применяют как материал инфраструктуры трубопроводов, деталей автомобилей, другой продукции машиностроения.
- Благодаря температуре плавления, износостойкости, малой истираемости используется как легирующая присадка.
Например, полпроцента титана плюс 0,08% циркония создают молибденовый сплав, не снижающий прочность до 1060°C.
Неординарные параметры по трению обусловили использование молибдена как долговечной смазки с высоким КПД.
Материал незаменим для ртутных реле, поскольку амальгама с данным металлом ртутью не формируется.
Вольфрам
Открыт в конце 18 века. Самый твердый и самый тугоплавкий (3422°C) металл.
Тугоплавкий прочный металл, светло-серого цвета – вольфрам
Вместе с медью и железом используется как основа (до 80%) сплавов с рением, торием, никелем. Такие добавки повышают плотность, порог стойкости к ржавлению, надежность.
Востребован как материал систем электроснабжения, приборов, боеприпасов, ядерных боеголовок ракет. Никелевые сплавы как материал клюшек ценят поклонники гольфа.
Вольфрам в слитках
Тантал
Самый стойкий к кислотам, коррозии из сегмента тугоплавких металлов.
Тяжёлый твёрдый металл серого цвета – тантал
Поэтому используется в конденсаторах смартфонов, планшетов, других гаджетов.
Совместим с биологическими организмами (не меняется под воздействием природных кислот). Благодаря этому применяется медициной.
Ниобий
Металл с небанальными характеристиками:
- Самый легкий (малой плотности) в сегменте.
- Уникален благодаря свойству менять коэффициент твердости и упругости в зависимости от степени отжига.
- Самый частый в сплавах-суперпроводниках.
Применяется как материал конденсаторов, газовых турбин ракет, самолетов. А также элемент ядерных реакторов и ламп электронных приборов.
Рений
Самый редкий и дорогой из тугоплавких металлов:
- В сплавах выступает легирующим, никогда – основным компонентом.
- Как лигатура, повышает утилитарные кондиции сплава: прочность, ковкость (например, с медью и платиной).
- Обнаружен последним в тугоплавком сегменте.
Сплавы с рением служат катализаторами, начинкой электронного оборудования, гироскопов, реакторов атомных объектов.
Дополнительная группа
Данный сегмент тугоплавких металлов включает девять позиций. Их общий признак – порог плавления от 1850°C.
Сюда зачислены девять элементов из трех групп (четвертый – шестой периоды) таблицы Менделеева.
У каждого своя «изюминка»:
- Осмий – самое плотное вещество планеты, самый тяжелый тугоплав.
- Иридий встречается чаще в метеоритах, чем на Земле.
- Метаморфозы теплоемкости гафния необъяснимы наукой до сих пор.
- Рутений назван в честь России.
- Из чистого ванадия вытачивают жетоны и медали для коллекционеров.
- Титан – единственный тугоплавкий цветной металл. Материал зубных и костных протезов.
- Без циркония невозможны салюты и фейерверки. Медицинский «дублер» титана.
Тонким слоем хрома и благородного родия покрывают поверхность изделий класса люкс, включая ювелирные. Процессы называются хромированием и родированием.
Рекомендации
- (in) .
- (in) Майкл Бауччо, справочник по металлам ASM, ASM International, Американское общество металлов,1993 г., 614 с. , «Тугоплавкие металлы» , с. 120–122.
- (in) Т. Е. Тиц и Дж. Уилсон , Поведение и свойства тугоплавких металлов , Stanford University Press ,1 – го июня 1965, 419 с. , «Общее поведение тугоплавких металлов» , стр. 1-28.
- (in) Джозеф Р. Дэвис, Сплавление: понимание основ ,2001 г., 647 с. , стр. 308-333.
- ↑ и (ru) В. А. Борисенко , « Исследование температурной зависимости твердости молибдена в диапазоне 20–2500 ° C » , Советская порошковая металлургия и металлокерамика , т. 1, с. 1,1963 г., стр. 182-186 ( DOI ).
- (in) Фатхи Хабаши , « Историческое введение в тугоплавкие металлы » , Обзор переработки полезных ископаемых и добывающей металлургии , том. 22, п о 1,2001 г., стр. 25-53 ( DOI ).
- (in) Kalpakjian Schmid Manufacturing Engineering and Technology , Pearson Prentice Hall,2006 г., 1326 с. , «Creep» , с. 86-93.
- (in) Анджей Веронски и Тадеуш Хейвовски , Термическая усталость металлов , CRC Press ,1991 г., 376 с. , «Устойчивые к ползучести материалы» , стр. 81-93.
- (in) Эрик Ласснер и Вольф-Дитер Шуберт , Вольфрам: свойства, химия, технология элемента, сплавы и химические соединения , Springer,1999 г., 422 с. , стр. 255–282.
- (ru) Группа Национального исследовательского совета (США) по вольфраму, Комитет по техническим аспектам критически важных и стратегических материалов, Тенденции использования вольфрама: отчет , Национальный исследовательский совет, Национальная академия наук, Национальная инженерная академия,1973 , стр. 1-3.
- (in) Эрик Ласснер и Вольф-Дитер Шуберт , Вольфрам: свойства, химия, технология элемента, сплавы и химические соединения , Springer,1999 г., 422 с. .
- (in) Майкл К. Харрис Здоровье и безопасность при сварке: практическое руководство для профессионалов в области OEHS , АМСЗ,2002 г., 222 с. , «Здоровье и безопасность при сварке» , стр. 28 год.
- (in) Уильям Л. Гэлвери и Фрэнк М. Марлоу , Основы сварки: вопросы и ответы , Industrial Press Inc.,2001 г., 469 с. , стр. 185.
- .
- (in) П. Рамакришнан, Порошковая металлургия: обработка для автомобильной, электротехнической / электронной и машиностроительной промышленности , New Age International,1 – го января 2007, 396 с. , «Порошковая металлургия для аэрокосмических применений» , стр. 38.
- (in) Арора, Арран, « Тяжелый вольфрамовый сплав для оборонных приложений » , Технология материалов , т. 19, п о 4,2004 г., стр. 210–216.
- (in) VS Moxson and FH (Sat) Froes , « Производство компонентов спортивного инвентаря с помощью порошковой металлургии » , JOM , Vol. 53,2001 г., стр. 39 ( DOI ).
- (in) Роберт Е. Смоллвуд , Специальная техническая публикация ASTM 849: Тугоплавкие металлы и их промышленное применение: симпозиум , ASTM International ,1984, 120 с. , «TZM Moly Alloy» , с. 9.
- (о) Г.А. Kozbagarova А.С. Мусин В.А. Михалев , « Устойчивость к коррозии молибдена в ртути » , защита металлов , т. 39,2003 г., стр. 374–376 ( DOI ).
- (in) CK Gupta , Extractive Metallurgy of Molybdenum , Boca Raton, CRC Press ,1992 г., 404 с. , «Электрическая и электронная промышленность» , с. 48–49.
- (в) Michael J. Magyar , , Геологическая служба США (доступ на 1 – м апреля 2010 года ) .
- (in) DR Ervin , DL Bourell , C. Persad и L. Rabenberg , ” Структура и свойства высокоэнергетического, высокоскоростного консолидированного молибденового сплава TZM ” , Материаловедение и инженерия: A , vol. 102,1988 г., стр. 25 ( DOI ).
- (in) Нейков Олег Д. , Справочник по порошкам цветных металлов: технология и применение , Нью-Йорк, Elsevier ,2009 г., 1- е изд. , 621 с. , «Свойства порошка молибдена и молибденовых сплавов» , стр. 464–466.
- (in) Джозеф Р. Дэвис , Руководство по специальности ASM: Термостойкие материалы ,1997 г., 591 с. , «Огнеупорные металлы и сплавы» , стр. 361-382.
- ↑ и (ru) Джон Хебда , « Ниобиевые сплавы и применение при высоких температурах » , Наука и технология ниобия: Материалы Международного симпозиума Niobium 2001 (Орландо, Флорида, США) , Companhia Brasileira de Metalurgia e Mineração,2 мая 2001 г..
- (in) Дж. Уилсон , Поведение и свойства тугоплавких металлов , Stanford University Press ,1965 г., 419 с. , «Рений».