Микроструктура нелегированного алюминия
Железо и кремний
Поскольку железо и кремний являются основными и обязательными примесными элементами, а также поскольку растворимость железа в твердом алюминии очень мала, то в микроструктуре всех марок алюминия — кроме рафинированного, особо чистого алюминия — видны фазы алюминий-железо и алюминий-железо-кремний. В литом равновесном состоянии в нелегированном алюминии могут присутствовать следующие фазы: FeAl 3, Fe 3 SiAl 12, Fe 2 Si 2 Al 9.
Второстепенные примеси
Второстепенные примеси, например, медь и марганец, находятся в слишком малом количестве, чтобы образовывать собственные фазы, но могут участвовать в образовании других фаз. Чтобы их обнаружить требуется высокое разрешение микроскопа и сложные методики идентификации фаз .
Виды и свойства алюминиевых сплавов
Работая с этим металлом и смесями на его основе, важно знать свойства алюминиевых сплавов. От этого будет зависеть область применения материала и его характеристики. Классификация алюминиевых сплавов приведена выше
Ниже будут описаны самые популярные виды сплавов и их свойства
Классификация алюминиевых сплавов приведена выше. Ниже будут описаны самые популярные виды сплавов и их свойства.
Алюминиево-магниевые сплавы
Сплавы алюминия с магнием обладают высоким показателем прочности и хорошо поддаются сварке. Дополнительного компонента в состав не добавляют более 6%. В противном случае ухудшается устойчивость материала к коррозийным процессам. Чтобы дополнительно увеличить показатель прочности без ущерба защите от коррозии, алюминиевые сплавы разбавляются марганцем, ванадием, хромом или кремнием. От каждого процента магния, добавленного в состав, показатель прочности изменяется на 30 Мпа.
Алюминиево-марганцевые сплавы
Чтобы увеличить показатель коррозийной устойчивости, алюминиевый сплав разбавляется марганцем. Этот компонент дополнительно увеличивает прочность изделия и показатель свариваемости. Компоненты, которые могут добавляться в такие составы — железо и кремний.
Сплавы с алюминием, медью и кремнием
Второе название этого материала — алькусин. Марки алюминия с добавлением меди и кремния идут на производство деталей для промышленного оборудования. Благодаря высоким техническим характеристикам они выдерживают постоянные нагрузки.
Алюминиево-медные сплавы
Смеси меди с алюминием по техническим характеристикам можно сравнить с низкоуглеродистыми сталями. Главный минус этого материала — подверженность к развитию коррозийных процессов. На детали наносится защитное покрытие, которое сохраняет их от воздействия факторов окружающей среды. Состав алюминия и меди улучшают с помощью легирующий добавок. Ими является марганец, железо, магний и кремний.
Алюминиево-медные сплавы
Алюминиево-кремниевые сплавы
Называются такие смеси силумином. Дополнительно эти сплавы улучшаются с помощью натрия и лития. Чаще всего, силумин используется для изготовления декоративных изделий.
Сплавы с алюминием, цинком и магнием
Сплавы на основе алюминия, в которые добавляется магний и цинк, легко обрабатываются и имеют высокий показатель прочности. Увеличить характеристики материала можно проведя термическую обработку. Недостаток смеси трёх металлов — низкая коррозийная устойчивость. Исправить этот недостаток можно с помощью легирующей медной примеси.
Авиаль
В состав этих сплавов входит алюминий, магний и кремний. Отличительные особенности — высокий показатель пластичности, хорошая устойчивость к коррозийным процессам.
Дюралюминий: особенности
Само наименование сплава пошло от торговой марки Dural, под которой был начат его выпуск. В русский язык оно пришло в начале двадцатого века и обозначает целую группу сплавов с алюминием в основе. Могут встречаться различные формы, например «дуралюминий» и «дюраль».
Области применения дюралюминия
Формула успеха дюралюминия была проста. Лёгкий вес и прочность нового продукта способствовали его быстрому распространению. Первым большим его применением стали конструкции каркаса дирижабля. Показал он себя отлично, и со временем ему находили место во всё больших отраслях машиностроения.
Авиастроители по достоинству оценили дюраль, и она быстро стала основой самолётостроения, а также в будущем основным конструкционным материалом в производстве космической техники.
Её применяют в производстве поездов. Дюралюминий в наши дни можно встретить даже на кухне в виде многочисленных бытовых предметов. А также активно используется дюралюминиевая фольга, в которой продают кондитерские изделия.
Активно используется сплав и в строительстве. Различные трубы, листы являются частями конструкций зданий.
Используется дюраль и в автомобилестроении, помогая инженерам уменьшить вес машины, улучшая технические показатели автомобиля. Благодаря устойчивости к высоким температурам, её можно использовать и для внутренних механизмов двигателя.
Дюралюминий лучше переносит вибрацию, чем сталь, что позволило применять его в буровых работах.
Можно заметить, что не все сплавы дюралюминия пригодны для сварки. Например, при строительстве самолётов для создания конструкций из деталей дюралюминия используются заклёпки. Они могут делаться из того же сплава дюралюминия, только пригодного для сварочных работ.
Дюраль: состав сплава
С течением времени состав сплава дюрали совершенствовался, появилось множество новых видов, их различия как в составе примесей, так и способе последующей обработки.
- Al+Cu+Mg. Этот тип называется дюралюмином. В зависимости от концентрации меди и марганца в сплавах меняются и его общие свойства и характеристики. Данный вид не имеет дополнительной защиты от коррозии, потому для его эксплуатации необходимо дополнительное покрытие для защиты от влаги.
- Al+Mg+Si. Такой тип называется «авиаль». Добавление к алюминию частей магния и кремния повысило коррозионную стойкость сплава. Для получения своих свойств сплав проходит термообработку при температуре около пятисот градусов по Цельсию и охлаждается в воде с температурой двадцать градусов с естественным старением около суток. Такая обработка позволяет эксплуатировать сплав в условиях повышенной влажности и под напряжением.
- Al+Mg, Al+Mn. Этот сплав имеет название «магналии». При его производстве не используется термическая обработка. Основными его плюсами является повышенная устойчивость к коррозии и хорошая пригодность к сварочным и паяльным работам.
Состав дюралюминия в процентах можно рассмотреть на примере состава сплава дюралюминий д16:
Al (Алюминий): 91 — 94.7%.
- Cu (Медь): 3.7−4.9%.
- Fe (Железо): 0.5%.
- Si (Кремний): 0.5%.
- Zn (Цинк): 0.25%.
- Mg (Магний): 1.1 — 1.8%.
- Cr (Хром): 0.1%.
- Mn (Марганец): 0.4% – 0.9%.
- Ti (Титан): 0.15%.
Могут добавляться маркировки, зависящие от форм выпуска сплава:
- «Т» — закалка в естественных условиях.
- «Т1» — после процесса искусственного старения.
- «А» — после покрытия специальными лаками и анодирования.
Свойства дюралюминия
Не смотря на попытки борьбы с коррозией путём добавления марганца и магния, дюралюминий все же ей подвержен и подвержен достаточно, чтобы на это обратить внимание. Потому, при эксплуатации необходимо защитить его при помощи какого-либо покрытия
Защита должна быть настолько тщательной, насколько это возможно.
Дюраль отличается небольшим весом при большой прочности. Благодаря этому её и используют как основной конструкционный материал в космонавтике и авиации. Используется также в авиастроении, при производстве скоростных поездов и различных других областях машиностроения.
Средняя плотность дюралюминия 2500−2800 килограмм на кубический метр.
Дюралюминиевый сплав, в отличие от алюминия чистого, хорошо подходит к сварочным работам.
Обладает высокой устойчивостью воздействиям среды и низкой уязвимостью к разрушению.
Появление такого лёгкого и прочного материала позволило поднять машиностроение на новый уровень и построить такие технические проекты, которые ранее казались неосуществимыми.
Стоимость
Что же касается цены на данный материал, она достаточно невысока, около 80 рублей за 1 кг. сплава. А вот цены на товары из этого сплава уже на порядок выше, но так же достаточно недорогие, если сравнивать с товарами из чистого металла.
19.02.2020 980
перейти к разделам
Бюст Пушкина А. С.
Старинный бюст Пушкина А.С. эпохи СССР. Предмет небольшого размера. Имеет явные следы времени, потертости, вмятины, царапины. Этот бюст Пушкина являет… 1500 ₽
Бюст Гагарина Ю. А.
Бюст первого человека в космосе — Юрия Алексеевича Гагарина. Ю.А. Гагарин — советский летчик-космонавт, герой Советского Союза, 12 апреля 1961 года ст… 0 ₽
Как формируется стоимость заказа
Цена алюминиевого листа А5М определяется его размером, весом и способом обработки. Также на стоимость влияет размер заказа. занимается оптовыми, мелкооптовыми и розничными продажами металлопроката, поэтому вы можете сами выбрать оптимальный баланс между размером партии и стоимостью материалов.
Также на цену влияют условия и расстояние доставки, необходимость хранения сформированного заказа на собственном складе до отгрузки, различные варианты упаковки товара. Кроме того, стоимость алюминиевого листа А5М подвержена влиянию сезонного спроса и актуальных валютных курсов.
Работая с , вы получаете следующие преимущества:
- обширный ассортимент продукции и наличие всех типоразмеров;
- постоянное наличие продукции на складах;
- отгрузка в течение суток (заказчику в Москве или на терминал транспортной компании);
- возможна дополнительная обработка алюминиевого листа (резка, гибка, перфорирование);
- продажа заготовками нужной формы;
- оптовая, мелкооптовая и розничная продажа;
- цены от производителя;
- большой выбор вариантов оплаты;
- скидки и особые условия сотрудничества с постоянными партнерами;
- квалифицированные консультанты;
- доставка в любые регионы РФ;
- упаковка в соответствии с пожеланиями заказчика (ПЭТ, ПВХ, бумага, промасленная бумага);
- хранение товара на складе до отгрузки;
- возврат в соответствии с действующим законодательством.
При доставке алюминиевого листа А5М в любой регион России отгрузка на терминал транспортной компании в Москве осуществляется в течение суток. При этом мы самостоятельно рассчитывает стоимость услуг транспортировщика и бесплатно доставляем заказ до терминала.
Основные свойства различных сплавов алюминия
Давайте рассмотрим основные сплавы на базе алюминия именно с точки зрения их приобретенных свойств.
Сплав меди и алюминия бываетнескольких видов – “чистый”, в котором главными действующими элементами выступают Al и Cu, “медно-магниевый”, в котором помимо меди и алюминия некоторую долю занимает магий и “медно-марганцевый” с легированием марганцем. Такие сплавы часто также называют дюралюминиям, их легко резать и сваривать “точечно”.
Характерная черта дюралюминов в том, что для них берется алюминий с примесями железа и кремния. Как мы уже говорили, обычно присутствие этих элементов ухудшает качество сплава, но данный случай – исключение. Железо при повторной термической обработке сплава повышает его жаростойкость, а кремний выступает катализатором в процессе “старения” дюралюминов. В свою очередь магний и марганец в качестве легирующих элементов делают сплав намного прочнее.
Сплав алюминия и магния имеет разные показатели прочности и пластичности, в зависимости от количества магния. Чем магния меньше, тем меньше прочность изделия из такого сплава и тем выше стойкость к коррозии. Увеличение содержания магния на 1 % приводит к росту прочности до 30 000 Па. В среднем сплавы на основе магния и алюминия содержат до 6% первого. Почему не больше? Если магния в сплаве становится слишком много, изделие из него будет быстро покрываться ржавчиной, а кроме того такие изделия имеют нестабильную структуру, могут треснуть и т.д.
Термообработку сплавов магния с алюминием не проводят, так как она малоэффективна и не дает необходимого эффекта увлечения прочности.
Сплав алюминия с цинком и магнием считается наиболее прочным из всех алюминиевых сплавов, известных на сегодняшний день. Его прочность сравнима с титаном! Во время термообработки большая часть цинка растворяется, что и делает данный сплав таким прочным. Правда использовать в электрической промышленности изделия из таких сплавов невозможно, они не стойки к коррозии под напряжением. Чуть повысить коррозионную стойкость можно, если добавить в состав меди, но показатель все равно останется не удовлетворительным.
Сплав алюминия с кремнием – самый распространенный сплав в литейной промышленности. Поскольку кремний прекрасно растворяется в алюминии при нагреве, то образуемый расплавленный состав замечательным образом подходит для формовочного и фасонного литья. Готовые изделия относительно легко режутся и имеют высокую плотность.
Сплав алюминия с железом, как и сплавы алюминия с никелем практически не встречается “в живую”. Железо добавляют исключительно как вспомогательный элемент для того, чтобы литейный сплав легко отлипал от стенок формы. Никель с свою очередь наиболее известен в производстве магнитов и присутствует в качестве одного из элементов в сплаве алюминий-никель-железо.
Сплав титана и алюминия, такжене встречается в чистом виде и используется только дляувеличения прочности изделий. С той же целью проводится сварка стали и сплавов алюминия.
Классификация марок алюминия
Среди марок алюминия различают по способу выплавки и назначению:
- марки первичного алюминия
- марки деформируемого алюминия
- марки литейного алюминия
Марки первичного алюминия
Первичный алюминий подразделяются на:
- алюминий особо высокой чистоты (содержание алюминия выше 99,995%)
- алюминий высокой чистоты (содержание алюминия от 99,95 до 99,995%)
- алюминий технической чистоты (содержание алюминия от 99,00 до 99,85%)
Марки первичного алюминия предназначены, главным образом, для переплавки при изготовлении алюминиевых сплавов, деформируемых и литейных. При этом для сплавов общего назначения применяются марки алюминия технической чистоты. Для изготовления специальных сплавов применяют марки алюминия высокой чистоты, например, для авиации и космонавтики. Кроме того, марки высокой чистоты и особо высокой чистоты применяют в различных высокотехничных технологиях, например, при производстве полупроводников.
Марки деформируемого алюминия
Основные марки деформируемого алюминия имеют чистоту от 99,00 до 99,85%. Они предназначены для изготовления продукции методом горячей и холодной обработки металлов давлением, то есть — прокаткой, экструзией, волочением, штамповкой и т. п.
Марки литейного алюминия
Марки литейного алюминия имеют очень ограниченное применение, в основном для изготовления литых роторов электрических двигателей. Они имеют чистоту от 99,00 до 99,70 %.
Химические свойства
Гидроксид алюминия
При нормальных условиях алюминий покрыт тонкой и прочной оксидной плёнкой и потому не реагирует с классическими окислителями: с O2, HNO3 (без нагревания), H2SO4(конц), но легко реагирует с HCl и H2SO4(разб). Благодаря этому алюминий практически не подвержен коррозии и потому широко востребован современной промышленностью. Однако при разрушении оксидной плёнки (например, при контакте с растворами солей аммония NH4+, горячими щелочами или в результате амальгамирования), алюминий выступает как активный металл-восстановитель. Не допустить образования оксидной плёнки можно, добавляя к алюминию такие металлы, как галлий, индий или олово. При этом поверхность алюминия смачивают легкоплавкие эвтектики на основе этих металлов.
Легко реагирует с простыми веществами:
с кислородом, образуя оксид алюминия:
- 4Al + 3O2 → 2Al2O3
с галогенами при комнатной температуре (кроме фтора), образуя хлорид, бромид или иодид алюминия:
- 2Al + 3Hal2 → 2AlHal3(Hal = Cl , Br , I )
с другими неметаллами реагирует при нагревании:
- 2Al + 3F2 → 2AlF3
- 2Al + 3S → Al2S3
- 2Al + N2 → 2AlN
- 4Al + 3C → Al4C3
Сульфид и карбид алюминия полностью гидролизуются:
- Al2S3 + 6H2O → 2Al(OH)3 + 3H2S
- Al4C3 + 12H2O → 4Al(OH)3 + 3CH4
Со сложными веществами:
с водой (после удаления защитной оксидной плёнки, например, амальгамированием или растворами горячей щёлочи):
- 2Al + 6H2O → 2Al(OH)3 + 3H2
со щелочами (с образованием тетрагидроксоалюминатов и других алюминатов):
- 2Al + 2NaOH + 6H2O → 2Na[Al(OH)4] + 3H2
- 2Al + 6NaOH → 2Na3AlO3 + 3H2
Легко растворяется в соляной и разбавленной серной кислотах:
- 2Al + 6HCl → 2AlCl3 + 3H2
- 2Al + 3H2SO4 → Al2(SO4)3 + 3H2
При нагревании растворяется в кислотах — окислителях, образующих растворимые соли алюминия:
- 2Al + 6H2SO4 → Al2(SO4)3 + 3SO2 + 6H2O
- Al + 6HNO3 → Al(NO3)3 + 3NO2 + 3H2O
восстанавливает металлы из их оксидов (алюминотермия):
- 8Al + 3Fe3O4 → 4Al2O3 + 9Fe
- 2Al + Cr2O3 → Al2O3 + 2Cr
Алюминиевые сплавы
Чем легируют алюминий
Чистый алюминий имеет очень низкую прочность и его применение как конструкционного материала весьма ограничено.
Когда в алюминий добавляют другие элементы — легирующие элементы — он повышает свою прочность благодаря различным упрочняющим механизмам.
Алюминий, в принципе, возможно легировать большинством металлических элементов. Однако только некоторые из них имеют достаточную растворимость в твердом состоянии, чтобы быть основными легирующими элементами.
Наиболее важными легирующими элементами алюминия являются:
- медь;
- марганец;
- магний;
- кремний и
- цинк.
Вместе с тем, значительное число других элементов оказывают заметный эффект на улучшение свойств алюминиевых сплавов. Их добавляют в небольших количествах. Эти элементы включают хром, тот же марганец и цирконий, которые применяют в основном для контроля зеренной структуры.
Максимальная растворимость легирующих элементов в алюминии обычно, но не всегда, достигается при эвтектической температуре. Растворимость легирующих элементов в твердом алюминии снижается со снижением температуры. Это изменение растворимости в твердом алюминии является основой для упрочнения алюминиевых сплавов за счет механизма старения.
Откуда железо в алюминии
Все промышленные сплавы содержат примерно от 0,1 до 0,4 % железа (по массе). Обычно железо в алюминиевом сплаве считается примесью. Его содержание зависит от исходной руды и технологии электролиза при его выплавке. Иногда железо добавляют намеренно для придания материалу особых свойств, например, до 1 % в сплавах для изготовления алюминиевой фольги.
Для чего добавки в алюминии
В комбинации с одним или более основными легирующими элементами часто применяют дополнительные элементы:
- висмут,
- бор,
- хром,
- свинец,
- титан и
- цирконий.
Эти элементы обычно применяют в малых количествах, как правило, до 0,1 %. Однако в некоторых алюминиевых сплавах содержание бора, свинца и хрома может достигать 0,5 %. Благодаря этим малым добавкам сплавы получают необходимые свойства для конкретных условий, такие как, хорошая текучесть при литье, высокое качество механической обработки, теплостойкость, коррозионная стойкость, высокая прочность.
Категории алюминиевых сплавов
Удобно разделять алюминиевые сплавы на две основных категории:
- литейные сплавы и
- деформируемые сплавы.
В каждой из этих категорий дальнейшее разделение основано главном механизме, который отвечает за формирование их свойств – термически упрочняемые сплавы и термически неупрочняемые сплавы. Сплавы последней группы получают свои конечные свойства в результате деформационной обработки – нагартовки. Поэтому иногда их называют более позитивно — деформационно упрочняемые или даже «нагартовываемые».
О сплавах 6060, 6063, АД31
«Рулят» в мировом производстве алюминиевых профилей сплавы серии 6ххх — алюминиевые сплавы легированные магнием и кремнием — каждым по около одного процента. Европейский стандарт EN 573-3 насчитывает их около 30 штук. Из этих тридцати сплавов наиболее широко применяются алюминиевые сплавы:
- и
- , а также
- 6005А,
- и
- 6082.
Из этих пяти сплавов в мире изготавливается более 90 % всех прессованных алюминиевых профилей.
Рисунок 7 – Популярные алюминиевые сплав серии 6ххх
Зарубежные алюминиевые сплавы
В настоящее время общепризнанной является система обозначений алюминиевых сплавов, которая была введена Американской Алюминиевой Ассоциацией (AA). Этой системы придерживаются и международные стандарты ISO, и европейские стандарты EN.
Каждый деформируемый сплав обозначается сочетанием четырех цифр, например, 2024. Первая цифра обозначает серию сплавов. Каждая из семи серий сплавов имеет один или два основных легирующих элементов. Например, в случае сплава 2024 из серии 2ххх – это медь.
Обозначения литейных сплавов также состоит из четырех цифр, однако между третьей и четвертой цифрами стоит точка, например, 380.0.
В России и других странах СНГ наряду с международной системой обозначений широко применяется и традиционная система буквенно-цифровая обозначений алюминиевых сплавов, например, АД31.
Современные алюминиевые сплавы
Алюминиевые сплавы используются вместо стали не так давно и в качестве главного преимущества выступает их низкий вес. Они имеют гораздо большую удельную прочность. Это значит, что для обеспечения равной прочности потребуется 10 г алюминия или 50 г стали (коэффициент выбран произвольно для примера).
Все алюминиевые сплавы подразделяют на силумины и дуралюмины. Силуминами называется сплав кремния с алюминия, дуралюминами – сплав алюминия и меди (возможно присутствие и дополнительных легирующих добавок).
Для спортивных изделий чаще всего применяется дуралюмин. С силуминами можно встретиться только в велосипедной сфере — там из него изготавливаются штаны вилки. Остальной же инвентарь выполняется из дюрали.
Чаще других вам встретятся сплавы В-95Т, АД33 и Д16Т. Также могут встречаться такие маркировки, как 6061, 7005 и 7075. Это всего лишь разные стандарты записи. Так сплав АД33 – это эквивалент сплава 6061, Д16 – аналог 7005, а В95 – 7075. Буква Т во всех случаях обозначает термообработку, а цифра после буквы Т – режим этой обработки. Для простого пользователя эта информация мало необходима. Но свойства этих сплавов разнятся.
Сплав Д16 (7005) – имеет большую вязкость, соответственно более пластичен и обладает меньшей упругостью. Прочность его соответственно тоже чуть меньше, чем у аналогов, но зато он меньше подвержен хрупкому разрушению и меньше растрескивается.
Сплав АД33 (6061) – обладает оптимальным диапазоном свойств и прекрасно справляется с ударными нагружениями. Обладает как пластичностью, так и прочностью.
Сплав В95 (7075) – самый прочный и упругий из всех перечисленных вариантов. Обладает большим запасом механической прочности, но при этом хрупкий и не очень хорошо воспринимает ударные нагрузки.
Остаётся ответить на вопрос, какой сплав лучше подойдет для какого варианта использования. Очевидно, что например для изготовления каркаса палатки, где нет ударного нагружения и усталости, а важна упругость, лучше подходит сплав типа В95. Для велосипедной рамы лучше подойдет сплав АД33, поскольку упругость и прочность важны в равных степенях. Сплав Д16 лучше подойдет для менее ответственных конструкций – например для изготовления каких-то стационарных зацепов или элементов защиты.
Кроме того, нужно иметь в виду, что алюминиевые изделия довольно сложно ремонтировать, поскольку не всегда удается найти специалиста, способного сваривать алюминиевые детали без специальной камеры. Однако, современные алюминиевые детали обладают очень высоким качеством (по сравнению с тем, что наблюдалось около 30-40 лет назад), а поэтому редко выходят из строя при соблюдении правил эксплуатации.