Марки меди – характеристики, маркировка и ее расшифровка
Марки меди широко представлены в различных отраслях промышленности: этот цветной металл благодаря своим уникальным характеристикам является одним из наиболее распространенных. Все марки этого металла отличают высокая пластичность и коррозионная устойчивость при эксплуатации в различных средах, за исключением аммиака и сернистых газов.
Круг медный Ø 30
Современная промышленность выпускает медные заготовки в виде листового материала, труб, проволоки, прутков и шин. Различают бескислородную (М0) и раскисленную (М1) медь, изделия из которых нашли широкое применение в электротехнической, электронной и электровакуумной промышленности. В бескислородных марках О2 содержится в пределах 0,001%, в раскисленных — 0,01%.
Марок, которые классифицируются по чистоте содержания основного металла, сегодня достаточно много: М00, М0, М1, М2 и М3. Распространены также марки М1р, М2р и М3р, которые характеризуются содержанием кислорода в пределах 0,01% и фосфора 0,04%. Для примера, в марках М1, М2 и М3 кислород содержится в пределах 0,05–0,08%.
меди, % | 99,99 | 99,95 | 99,97 | 99,90 | 99,90 | 99,70 | 99,70 | 99,50 | 99,50 | 99,00 |
Примеси в медных сплавах
Примеси, содержащиеся в меди (и, естественно, взаимодействующие с ней), подразделяют на три группы.
Образующие с медью твердые растворы
К таким примесям относятся алюминий, сурьма, никель, железо, олово, цинк и др. Данные добавки существенно снижают электро- и теплопроводность. К маркам, которые преимущественно используются для производства токопроводящих элементов, относятся М0 и М1. Если в составе медного сплава содержится сурьма, то значительно затрудняется его горячая обработка давлением.
Не растворяющиеся в меди примеси Сюда относятся свинец, висмут и др. Не влияющие на электропроводность основного металла, такие примеси затрудняют возможность его обработки давлением. Примеси, образующие с медью хрупкие химические соединения
К этой группе относятся сера и кислород, который снижает электропроводность и прочность основного металла. серы в медном сплаве значительно облегчает его обрабатываемость при помощи резания.
Марки меди и их применение
Стандарты для медных сплавов
Государственными стандартами оговариваются правила маркировки меди и ее сплавов, обозначение которых соответствует определенной структуре.
О том, что перед нами одна из марок меди, свидетельствует буква «М» в ее обозначении.
После цифр следуют прописные буквы, по которым можно определить, каким способом получили данную марку меди. Из технологических способов получения меди различают следующие:
- катодные (к);
- метод раскисления, предполагающий невысокое содержание остаточного фосфора (р);
- метод раскисления, предполагающий высокое содержание остаточного фосфора (ф);
- без использования раскислителей – бескислородные (б).
Примеры маркировок таких марок и сплавов меди могут выглядеть следующим образом: М2р, М1б.
Химический состав меди ГОСТ 859-2014
Целый ряд марок меди, отличающихся уникальными характеристиками, активно используют в различных отраслях промышленности.
- М0 – эта марка применяется для производства токопроводящих элементов и для добавления в сплавы, отличающиеся высокой чистотой.
- М1 — из этой марки также производят токопроводящие элементы, прокат различного профиля, бронзы, детали для криогенной техники, электроды для сварки меди и чугуна, проволоку и прутки (применяемые для выполнения сварочных работ под слоем флюса и в среде инертных газов), расходные материалы для выполнения газовой сварки деталей из меди, не испытывающих значительных нагрузок при эксплуатации.
- М2 – данная марка позволяет получать изделия, хорошо обрабатываемые давлением. Медь М2 также используют для деталей криогенной техники.
- МЗ — детали из данной марки металла производят прокатным методом.
Пространственное распределение запасов меди в России
ГОСТ 859-2001, в котором оговаривались требования и характеристики медных сплавов, в 2014 году был заменен новым государственным стандартом (859-2014), что зафиксировано соответствующим Приказом Федерального агентства по техническому регулированию и метрологии. Новый стандарт по основным своим пунктам практически идентичен ГОСТу 859-2001.
ГОСТ 859-2001 о марках меди
Данный документ государственного стандарта относится к литым и деформированным полуфабрикатам из меди, а также к меди, изготовленной в виде катодов.
2 Физико-химические свойства меди
Незначительная примесь кислорода обеспечила меди красноватый оттенок. Если воздействие кислорода исключить полностью, цвет металла изменится на желтый.
Начищенная медь обладает ярко выраженным блеском. Чем выше валентность, тем слабее окрас. Так, оксид CuCl имеет белый цвет, Cu2O – красный, CuO – черный. Карбонаты меди, как правило, синего или зеленого цвета.
Начищенная медь с ярко выраженным блеском
Медь – второй металл после серебра, обладающий высокой электропроводностью, благодаря чему он широко используется в электронике.
Медь слабо вступает в реакцию с кислородом, имеет свойство окисляться на воздухе и покрываться пленкой. В сухом воздухе окисление происходит очень медленно: 4Cu+O2=2Cu2O. Металлы этой группы не способны вытеснить водород из воды и кислот.
Области применения меди и его сплавов
И так, медь применяют для изготовления:
– медной проволоки. Одним из свойств меди является хорошая проводимость электрического тока, поэтому чистую медь используют для производства проволоки, которая присутствует в самых разных приборах и изделиях.
– медных труб. Как было сказано ранее, медь не вступает во взаимодействие с водой и вместе с антикоррозийными свойствами отлично подходит для изготовления водопроводных труб. Такие трубы надежды и будут служить достаточно долго.
– посуды. Антибактериальные свойства позволяют использовать медь для изготовления разнообразной посуды. Когда на поверхности посуды образовываются царапины, внутри них начинают развиваться патогенные микроорганизмы, а свойства меди не позволяет этим организмам развиваться с полной силой.
– медной кровли. Кровельные покрытия из меди весьма популярны, так как имеют большой срок эксплуатации. Не одно десятилетие такая кровля может надежно служить из-за образованного на ней налета – патины. Именно этот налет служит защитным покрытием меди от негативных внешних факторов (температур, ультрафиолетовых лучей).
– украшений и предметы декоры. Бытует мнение, что медь имеет лечебные свойства и поэтому из нее изготавливают разные украшения – браслеты, кольца, подвески. Медь удачно смотрится в качестве разных предметов декора, например, скульптур, уличных фонарей, люстр, дверных ручек и др.
На этом сферы и области применения меди и её сплавов не заканчиваются. Их качественные характеристики чрезвычайно выгодны. Именно поэтому медь была востребована много лет назад и в будущем не утратит своей популярности.
Смотри так же полезные стать про:
– Вес меди
Типы бронзовых сплавов
О том, насколько популярной была и остается бронза, говорит и тот факт, что целый период в истории человечества был назван бронзовым веком. Ученые считают, что само слово «бронза» обязано своим происхождением старому названию итальянского города Бриндизи, известного своими литейными мастерскими.
Изначально бронзу получали в процессе расплавления и смешивания таких металлов, как медь и олово. Из нее часто отливали колокола, поэтому она получила название «колокольная». Она также использовалась для изготовления оружия и орудий труда, различной домашней утвари, скульптурных композиций и предметов интерьера.
Статуэтки из бронзовых сплавов изготавливаются по технологии художественного литья
На многих старинных фото можно увидеть интерьерные изделия из бронзы, которые и сейчас поражают своей красотой. С развитием металлургической промышленности появились и другие виды бронзы, в которые вместо олова стали вводить алюминий, железо, бериллий, кремний, цинк, свинец, фосфор и др.
Изменение традиционного химического состава бронзы позволило не только улучшить ее механические свойства (твердость, прочность, износостойкость и устойчивость к воздействию агрессивных сред), но и изменить ее цвет. Так, цвет поверхности бронзовых изделий может варьироваться от красного (если в бронзе содержится большое количество меди) до серого и даже черного. Изменение цвета данного сплава при варьировании его химического состава является очень важным его свойством при изготовлении изделий декоративного назначения.
Цвет бронзового проката зависит от содержащихся в нём химических элементов
Многие путают бронзу с латунью, хотя это совсем другой медный сплав с другими свойствами, в химическом составе которого, кроме основного металла, присутствует цинк. Хотя по цвету латунь можно спутать с некоторыми марками бронзы, по многим из своих характеристик это разные материалы, поэтому и сферы их применения различаются.
Еще один распространенный сплав меди, основным легирующим элементом которого является никель, – это мельхиор. Поверхность изделий из него отличается красивым серебристым цветом. Мельхиор активно используется для чеканки монет и изготовления столовых приборов.
Если говорить о бронзах первого типа, то максимальное количество олова в их химическом составе может доходить до 33%. Увеличение содержания олова несколько снижает удельный вес и плотность основного металла, но увеличивает такие свойства итогового материала, как твердость и прочность. Кроме того, с увеличением олова в составе бронзы цвет изделий, которые из нее изготовлены, становится светлее, что заметно даже по их фото. Кроме олова, которое также снижает температуру плавления готового сплава, в химическом составе такого металла могут содержаться и другие химические элементы – мышьяк, свинец, цинк и др.
Химический состав оловянных бронз
Если говорить о безоловянных бронзах, удельный вес и плотность которых незначительно отличаются от аналогичных характеристик сплавов первого типа, то по многим из своих механических свойств они могут превосходить не только оловянные бронзы, но и некоторые марки стали. Естественно, что и цвета изделий, изготовленных из таких сплавов, могут серьезно разниться.
Химический состав безоловянных бронз (нажмите для увеличения)
Область применения сплавов меди
Медь обладает невысоким удельным сопротивлением. Это свойство обеспечило меди широкое применение в электротехнической промышленности. Из меди изготавливаются проводники, провода, кабели. Медь используется при изготовлении печатных плат различных электронных устройств. Медные провода используются в электрических двигателях и трансформаторах.
У меди высокая теплопроводность. Это обеспечивает ей применение при изготовлении охладительных и отопительных радиаторов, кондиционеров, кулеров.
Прочность и коррозиоустойчивость меди послужили основанием для изготовления из неё труб, находящих значительную сферу применения: в водопроводных, газовых и отопительных системах, в охладительном оборудовании, в кондиционировании.
В строительстве медь применяется при изготовлении крыш и фасадных деталей зданий.
Бактерицидные особенности меди дают ей возможность использования в медицинских заведениях как дезинфицирующего материала: при изготовлении деталей интерьера, которых люди касаются больше всего – дверных ручек, перил, поручней, бортиков кроватей и т.п.
Медные сплавы имеют не меньшую сферу применения.
Бронзы (по маркам) применяются при производстве деталей машин: паровой и водяной арматуры, элементов ответственного назначения, подшипников, втулок. Оловянистые деформируемые бронзы используют для производства сеток, используемых в целлюлозно-бумажной промышленности.
Латуни (по маркам) находят применение при производстве деталей машин в области теплотехники и химической аппаратуры. Из них изготавливают различные змеевики и сильфоны. В автомобилестроении латуни используют для изготовления конденсаторных труб, патрубков, метизов. В судостроении и авиастроении латуни также используются для изготовления деталей, конденсаторных труб, метизов. Из латуней изготавливаются детали часовых механизмов, полиграфические матрицы.
Мельхиор МНЖМц используется для производства конденсаторных трубок морских судов, работающих в наиболее тяжёлых условиях. Мельхиор МН19 используется для изготовления медицинских инструментов, монет, украшений, столовых приборов.
Другие востребованные медные сплавы
Известны и другие сплавы меди с разными металлами, однако у одних шире область применения, чем у других.
Свойства и применение медно-никелевых сплавов.
Сплавы из меди и никеля в основном содержат медную составляющую, а никель добавляется как легирующий элемент. Результатом такого соединения является сплав с повышенными показателями антикоррозионной стойкости, прочности и электросопротивления. Сплавы медно-никелевого состава относят к одному из двух видов: электротехническому или конструкционному.
Конструкционные сплавы – это нейзильбер и мельхиор. Мельхиором называют сочетание, в составе которого медь, никель (5–35 %), цинк (13–45 %). Нейзильбер представляет собой соединение меди и никеля, иногда в смесь добавляются железо и марганец. Мельхиоровые изделия наверняка имеются у многих дома, особая популярность принадлежит знаменитым подстаканникам.
У электротехнических медно-никелевых сплавов высокое электросопротивление. В эту группу входят константан и копель. В составе термостабильного соединения − константана − чуть больше половины, примерно 59 %, занимает медь, никель составляет 39–41 %, марганец всего 1-2 %. Материал отличается высоким удельным электрическим сопротивлением (около 0,5 мкОм-м), минимальным значением термокоэффициента электрического сопротивления, высокой электродвижущей силой в паре с медью, хромом, железом. Копелем называют сплав, в котором никель составляет 43-44 %, железо 2-3 %, остальную часть занимает медь.
Состав и свойства медных сплавов, в данном случае медно-никелевых, подходят для применения в электрических аппаратах и следующих типах изделий: резисторов, реостатов, термопар. Из материалов этого вида изготавливается посуда, медицинский инструмент, художественные изделия и сувениры. Медно-никелевые соединения применяются в строительстве судов. Банк России заказывает из этого сплава монеты достоинством один и два рубля по образцу 1997 г.
Свойства и применение вольфрамово-медных сплавов.
Очень необычные свойства у вольфрамово-медного соединения CuW или WCu. Это сочетание по большому счету назвать полноценным сплавом нельзя. В полученном материале частицы одного металла равномерно распределяются внутри кристаллической решетки второго. В сплаве сочетаются качества и меди, и вольфрама, благодаря чему он отличается термостойкостью, устойчивостью к абляции, высокой тепло- и электропроводностью. К тому же он хорошо поддается обработке. Для изготовления деталей применяется следующая технология: вольфрамовые частицы прессуют и уплотняют, придавая необходимую форму, затем проходит этап инфильтрации медного расплава.
Космическая индустрия, электроэнергетика, металлургия, машиностроение, электроника – вот неполный перечень промышленных областей, где используют сплав меди и вольфрама. Из этого материала изготавливают электроды для сварочных аппаратов – детали из сплава выдерживают высокое и среднее напряжение при дуговой и вакуумной сварке.
Свойства и применение молибденово-медных сплавов.
Сплав из меди и молибдена обладает меньшим весом, чем медно-вольфрамовый. Это преимущество используют там, где нужно уменьшить массу изделия. Заготовки из молибденово-медного сплава – это плоские пластинки, имеющие многослойную структуру. Внутри располагается основной слой чистого молибдена, который с двух сторон покрывают слоями 100%-ной меди или медью с дисперсионно-упрочненными качествами.
Данный вид медных сплавов обладает свойствами обоих видов металлов и отличается хорошими комплексными характеристиками. Вот некоторые качества данного соединения:
— высокая проводимость;
— возможность регулирования коэффициента теплового расширения;
— низкий процент содержания газов;
— сплав не магнитится;
— у материала имеются необходимые вакуумные свойства;
— легко обрабатывается механическим путем, обладает особыми высокотемпературными качествами.
При отсутствии скачков температуры и при средних температурных показателях у молибденово-медного сплава хорошие показатели прочности и пластичности. Когда внешняя температура выше температуры плавления меди, металл сжимается, испаряется и поглощает тепло, он может оказывать охлаждающее воздействие. Данные качества высокотемпературного материала могут использоваться в технологиях изготовления огнеупорных вкладышей горла сопла, электрических контактов и т. д.
Медные сплавы, их свойства, характеристики, марки
Изготовление медных сплавов позволяет улучшить свойства меди, не теряя основных преимуществ данного металла, а также получить дополнительные полезные свойства.
Бронза
Сплав меди с оловом. Однако, с развитием технологий появились также бронзы, в которых вместо олова в состав сплава вводятся алюминий, кремний, бериллий и свинец.
Бронзы твёрже меди. У них более высокие показатели прочности. Они лучше поддаются обработке металла давлением, прежде всего, ковке.
Маркировка бронз производится буквенно-цифровыми кодами, где первыми стоят буквы Бр, означающими собственно бронзу. Добавочные буквы означают легирующие элементы, а цифры после букв показывают процентное содержание таких элементов в сплаве.
Буквенные обозначения легирующих элементов бронз:
- А – алюминий,
- Б – бериллий,
- Ж – железо,
- К – кремний,
- Мц – марганец,
- Н – никель,
- О – олово,
- С – свинец,
- Ц – цинк,
- Ф – фосфор.
Пример маркировки оловянистой бронзы: БрО10С12Н3. Расшифровывается как «бронза оловянистая с содержанием олова до 10%, свинца – до 12%, никеля – до 3%».
Пример расшифровки алюминиевой бронзы: БрАЖ9-4. Расшифровывается как «бронза алюминиевая с содержанием алюминия до 9% и железа до 4%».
Латунь
Это сплав меди с цинком. Кроме цинка содержит и иные легирующие добавки, также и олово.
Латуни – коррозионно устойчивые сплавы. Обладают антифрикционными свойствами, позволяющими противостоять вибрациям. У них высокие показатели жидкотекучести, что даёт изделиям из них высокую степень устойчивости к тяжёлым нагрузкам. В отливках латуни практически не образуются ликвационные области, поэтому изделия обладают равномерной структурой и плотностью.
Маркируются латуни набором буквенно-цифровых кодов, где первой всегда стоит буква Л, означающая собственно латунь. Далее следует цифровой указатель процентного содержания меди в латуни. Остальные буквы и цифры показывают содержание легирующих элементов в процентном соотношении. В латунях используются те же буквенные обозначения легирующих элементов, что и в бронзах.
Пример маркировки латуни двойной: Л85. Расшифровывается как «латунь с содержанием меди до 85%, остальное – цинк».
Пример маркировки латуни многокомпонентной: ЛМцА57-3-1. Расшифровывается как «латунь с содержанием меди до 57%, марганца – до 3%, алюминия – до 1%, остальное – цинк».
Медно-никелевые сплавы
- Мельхиор — сплав меди и никеля. В качестве добавок в сплаве могут присутствовать железо и марганец. Частные случаи технических сплавов на основе меди и никеля:
- Нейзильбер – дополнительно содержит цинк,
- Константан – дополнительно содержит марганец.
У мельхиора высокая коррозионная устойчивость. Он хорошо поддаётся любым видам механической обработки. Немагнитен. Имеет приятный серебристый цвет.
Благодаря своим свойствам мельхиор является, прежде всего, декоративно-прикладным материалом. Из него изготавливают украшения и сувениры. В декоративных целях является отличным заменителем серебра.
Выпускается 2 марки мельхиора:
- МНЖМц – сплав меди с никелем, железом и марганцем;
- МН19 – сплав меди и никеля.
Латуни
Латуни — это медные сплавы, в которых основным легирующим элементом является цинк.
В зависимости от содержания цинка латуни промышленного применения бывают:
- однофазные a — латуни, содержащие до 39 % цинка (это предельная растворимость цинка в меди);
- двухфазные (a+b|)- латуни, содержащие до 46 % цинка;
- однофазные b|- латуни ,содержащие до 50 % цинка.
Однофазные a- латуни пластичны, хорошо обрабатываются резанием, давлением при температурах ниже 300 0 С и выше 700 0 С (в интервале от 300 0 С до 700 0 С — зона хрупкости). С увеличением содержания цинка прочность латуней повышается. В латунях b|- фаза представляет собой упорядоченный твердый раствор на базе электронного соединения СuZn с решеткой ОЦК, она хрупкая и прочная. Поэтому, чем больше в латунях b|- фазы, тем они прочнее и менее пластичны. Практическое применение имеют латуни с содержанием цинка до 42…43 %.
Латуни, обрабатываемые давлением, маркируются буквой Л (латунь), после которой ставятся буквенные обозначения легирующих элементов; цифры, следующие за буквами, указывают содержание меди и количество соответствующего легирующего элемента в процентах. Содержание цинка определяется по разности от 100 %. Например, латунь Л62 содержит 62 % Сu и 38 % Zn. Литейные латуни маркируются буквой Л, после которой ставится содержание цинка и других легирующих элементов в процентах. Количество меди определяется по разности от 100 %. Например, латунь ЛЦ36Мц20С2 содержит 36 % Zn, 20 % Mn, 2 % Pb и 42 % Сu.
К однофазным a — латуням относятся Л96 (томпак), Л80 (полутомпак), Л68, имеющая наибольшую пластичность (d = 56 %). Двухфазные (a+b|) — латуни марок Л59 и Л60 имеют меньшую пластичность в холодном состоянии, но большую прочность и износостойкость. Однофазные имеют после отжига sв = 250…350 МПа и d = (50…56) %, двухфазные — sв = 400…450 МПа и d = (35… 40 %).
Для повышения механических свойств и коррозионной стойкости латуни могут легироваться оловом, алюминием, марганцем, кремнием, никелем, железом и др.
Введение легирующих элементов (кроме никеля) уменьшает растворимость цинка в меди и способствует образованию b|- фазы, поэтому такие латуни чаще двухфазные (a+b|). Никель увеличивает растворимость цинка в меди, и при достаточном его содержании латунь из двухфазной становится однофазной. Свинец облегчает обрабатываемость резанием и улучшает антифрикционные свойства. Сопротивление коррозии повышают Al, Zn, Si, Mn, Ni, Sn.
В морском судостроении применяются оловянистые ”морские” латуни, например, ЛО70-1 (70 % Сu, 1 % Sn, 29 % Zn). Она используется для изготовления конденсаторных трубок, деталей теплотехнической аппаратуры.
Алюминиевые латуни
используют для изготовления конденсаторных трубок, цистерн, втулок, а также для изготовления коррозионно-стойких деталей, работающих в морской воде. Марки латуней: ЛА77-2, ЛАЖ60-1-1, ЛАН59-3-2 (в электрических машинах, в хим. машиностроении). Из латуни ЛАНКМц75-2-2,5-0,5-0,5 изготовляют цельнотянутые круглые трубы для производства манометрических трубок и пружин в приборах повышенного класса точности. С помощью закалки и старения sв достигает 700 МПа.
Марганцевые латуни
кроме хороших механических и технологических свойств (обрабатываются давлением в холодном и горячем состоянии) обладают высокой коррозионной стойкостью в морской воде, хлоридах и перегретом паре. Латуни ЛМц 58-2 и ЛМцА 57-3-1 применяются в основном для изготовления крепежных изделий арматуры.
Кремнистые латуни
характеризуются высокой прочностью (sв до 640 МПа), пластичностью и вязкостью до минус 183 0 С. Латунь ЛК80-3 применяют для изготовления арматуры, деталей приборов в судо- и общем машиностроении.
Свинцовистые латуни
отлично обрабатываются резанием и обладают высокими антифрикционными свойствами. Латуни ЛС60-1, ЛС59-1 применяют для изготовления крепежных деталей , зубчатых колес, втулок.
Никелевая латунь
обладает повышенными механическими (sв до 785 МПа) и коррозионными свойствами, обрабатывается давлением в холодном и горячем состоянии. Латунь ЛН65-5 применяется для изготовления манометрических и конденсаторных трубок, различного вида проката.
Литейные латуни
содержат те же элементы, что и латуни, обрабатываемые давлением; от последних литейные отличает, как правило, большее легирование цинком и другими металлами. Вследствие этого они обладают хорошими литейными характеристиками.
Латуни, относящиеся к категории деформируемых и литейных сплавов
Латуни, относящиеся к категории деформируемых сплавов, отличаются повышенной устойчивостью к коррозии, они очень пластичны и обладают исключительными антифрикционными характеристиками. Сплавы меди с цинком этой категории хорошо свариваются с изделиями из стали. Это свойство дает возможность использовать их для производства различных биметаллических конструкций. Желтая латунь имеет привлекательный внешний вид, благодаря чему ее часто используют для производства различной фурнитуры и декоративных изделий.
Латуни, относящиеся к категории деформируемых сплавов, используются для производства:
- конденсаторных труб (для этих целей требуются латуни марок ЛМш68-0,05, ЛО60-1, ЛО62-1, ЛО70-1, ЛО90-1, ЛА77-2);
- обладающих повышенной коррозионной устойчивостью деталей машин, речных, морских судов (здесь применяется латунь марок Л68, Л80, Л90);
- деталей, которые производятся методом резки (для производства таких деталей используется латунь марки ЛЖС58-1-1);
- различных втулок, крепежных изделий – болтов, гаек и т.п. (для производства таких изделий применяются латуни марок ЛС59-1, ЛМц58-2, ЛС60-1);
- матриц, которые используются в полиграфической промышленности (для таких изделий требуется латунь марки ЛС64-2).
Состав и свойства различных видов латуни
Латуни, относящиеся к категории литейных сплавов, применяются для производства таких изделий, как:
- штуцеры, используемые для оснащения гидравлических систем автомобилей (ЛЦ25С2);
- подшипники и сепараторы различного типа (ЛЦ40С);
- винты червячного типа, имеющие большие габариты и массу (ЛЦ23А6Ж3Мц2);
- детали с особыми свойствами, которые эксплуатируются при температурах, превышающих 300 градусов Цельсия (ЛЦ40Мц3Ж);
- детали, к которым предъявляются повышенные требования по коррозионной устойчивости (ЛЦ30А3).
Исторический ракурс
Согласно историческим данным, первый медный сплав появился к 7 тыс. до н.э. Позже в качестве добавки стало использоваться олово. В это время, именуемое бронзовым веком, из такого материала изготавливалось оружие, зеркала, посуда и украшения.
Технология производства менялась. Появились добавки в виде мышьяка, свинца, цинка и железа. Все зависело от требований, предъявляемых к предмету. Материал для украшений нуждался в особом подходе. Состав сплава состоял из меди, олова и свинца.
Начиная с 8 в. до н. э. в Малой Азии была разработана технология получения латуни. В это время еще не научились добывать чистый цинк. Поэтому в качестве сырья использовалась его руда. С течением времени производство медных сплавов постоянно расширялось и до сих пор находится на первых местах.
ЛАТУНЬ
Сплав меди с цинком, процентное содержание цинка в котором составляет от 5 до 45%, называется латунью. Латунь, в состав которой входит 2-20% цинка, называется томпак или красная латунь. Если содержание цинка равно 20-36%, то такая латунь называется жёлтой. Латуни, с более чем 45% цинка в своём составе, применяются крайне редко.
· Простые (двухкомпонентные) – сплавы которые состоят из цинка и меди с незначительными примесями других элементов;
· Специальные (многокомпонентные) латуни в своём составе помимо меди и цинка включают ряд других легирующих элементов.
Двухкомпонентные латуни обозначаются заглавной буквой «Л», за которой следует двузначная цифра, определяющая среднее значение процентного содержания меди в сплаве (Л80-латунь, в состав которой входит 80% меди и 20% цинка).
Классификация простых латуней приведена в таблице:
Латунь
При введении в расплав меди цинка, получают сплав под названием латунь. Существует двухкомпонентная латунь, в нем содержаться только медь и цинк. Кроме нее промышленность выпускает специальные сплавы, в состав которых входят многочисленные легирующие элементы.
Применение цинка, как компонента сплава существенно повышает прочностные параметры меди. Максимальной пластичности достигает латунь, в состав которой входит порядка 40% цинка.
Большая часть произведенной латуни, используют для производства катаных изделий – труб, листа, проволоки и многих других.
Латунь
При маркировке латуни используют набор букв и цифр. Буква Л, говорит о том, что это латунь. Затем следует набор символов, показывающий какие материалы, входят в состав этого сплава. Надо отметить, то, что содержание цинка не показывается. Для того, что бы его узнать, надо из 100% отнять, входящее в медный сплав количество основного материала и других элементов. Например, латунь Л90, содержит в себе 90% меди, а остальное составляет цинк.
По технологическому предназначению из разделяют на литейные и те, которые обрабатывают под давлением. Последние называют деформируемыми.
Порядок маркировки
Для маркировки рассматриваемого сплава были приняты определенные правила обозначения концентрации основных веществ. Все марки латуни начинаются с обозначения «Л», после которой могут идти буквы химических веществ, входящих в состав.
Деформируемый сплав латуни или иная его разновидность после первой буквы имеет число, характеризующее процент меди. Кроме этого маркировка может указывать на концентрацию легирующих элементов, для чего знак «Л» идет с другими буквенными обозначениями.
Для указания концентрации легирующих элементов после основной цифры ставится прочерк, затем указывается процентное содержание следующих элементов. Для разделения цифровых обозначений также применяется прочерк. Концентрация второго основного элемента (цинка) высчитывается, для чего от 100% значения отнимаются другие показатели концентрации меди и легирующих элементов. Примером того, как латунь обозначается согласно установленным стандартам назовем маркировку ЛАЖ70-1-2. Ее нужно читать следующим образом:
- В состав сплава входит 70% меди.
- Легирующими элементами выступает алюминий и железо, концентрация которых составляет 1% и 2% соответственно.
- Концентрация цинка: 100 – 70 – 1 – 2 = 27%.
В некоторых случаях концентрация цинка указывается соответствующей буквой, а количество меди высчитывается. Подобный метол маркировки чаще применяется для обозначения литейных латуней.
Источники меди для вторсырья
Экономия ресурсов – важная экологическая и технологическая задача. Медь – слишком ценный элемент, чтобы запросто им разбрасываться. Поэтому при утилизации бытовых устройств и приборов (телевизоров, холодильников, компьютерной техники) нужно срезать все медь содержащие элементы и сдавать их на пункты сбора вторсырья. На производствах должен быть организован централизованный сбор списанных силовых кабелей и трансформаторов, электродвигателей, прочих медь содержащих деталей и устройств. Определённое содержание меди есть в испорченных люминесцентных лампах, что тоже стоит учитывать при утилизации.
Медь и медные сплавы, освоенные человечеством на самой заре цивилизации, остаются востребованными материалами и в технологическую эпоху, основу которой составляет железо. Современное промышленное производство невозможно себе представить без использования цветных металлов
В дальнейшем потребность в меди её сплавах будет только расти, поэтому очень важно относиться к данным материалам экономно и использовать их рационально
Рейтинг: /5 –
голосов
Идеальный союз серебра и меди
Лигатурой называют различные примеси, используемые для придания драгметаллу большей твердости. Главным легирующим веществом при работе с серебром является медь. Благодаря меди драгметалл становится прочнее, сохраняя при этом пластичность и красоту.
Степень чистоты сплава отражается на его стоимости. Чем чище материал, тем он дороже.
Медь и серебро Идеальным сочетанием металлов называют стерлинговый сплав. Он содержит 92,5% чистейшего серебра, а остаток приходится на медь. Этот сплав является одним из самых дорогих и востребованных.
Этот союз меди и серебра идеально подходит для создания ювелирных изделий: ожерелий, цепей, подвесок, колец, сережек. Из него отливают разнообразную кухонную утварь, сувениры, элементы декора.