Учимся делать измерения разными видами микрометров

Процедура измерения

Чтобы проводить точные измерения, необходимо чётко понимать, как пользоваться микрометром. На самом деле измерять прибором очень просто, если понимать основные принципы его работы.

Первое, что предстоит сделать перед началом работы — проверить калибровку устройства. Микрометр систематически требуется проверять на предмет отсутствия дефектов и отклонений, которые могут возникать в процессе проведения измерений.

В том случае, когда сбивается шкала, следует провести регулировку при помощи специального ключа, входящего в комплект каждого микрометра. Ну, а для того чтобы понять, насколько точен инструмент, достаточно просто сомкнуть измерительные плоскости.

При этом нужно помнить, что после того как микрометрический винт встанет впритык к противоположной плоскости, на электронном табло устройства высветится показатель ноль. Что же касается механических приборов, то в таких устройствах барабан должен практически полностью прикрывать стебель инструмента, в то время как скошенный край должен стать на нулевую отметку.

После проверки следует зафиксировать измеряемую деталь. Однако этот процесс имеет некоторые особенности, которые следует учитывать. Слишком сильно зажимать деталь никогда нельзя, так как это может негативно сказаться на результатах измерения и даст большую погрешность в вычислениях.

Для зажима деталей в устройстве предусмотрен специальный механизм. Чтобы зафиксировать предмет, необходимо дожать винт устройства при помощи специального барабана, располагающегося непосредственно у 2-й измерительной плоскости.

В процессе закрепления предмета должен почувствоваться небольшой упор, после чего можно постепенно делать смещение по ручке и производить вращение трещотки. Как только будут слышны щелчки, следует прекратить вращение, поскольку это означает, что деталь уже хорошо зафиксирована.

Заключительный этап — снятие показаний прибора. Что касается электронных приборов, то тут всё просто — достаточно посмотреть на дисплей и переписать полученные данные. Механические устройства немного сложней в этом плане. Для того чтобы понять, какие показания зафиксировало устройство, необходимо сначала считать информацию с крупных, а затем с мелких цифр, располагающихся на обеих шкалах. Нужно помнить, что нижние деления указывают на 1 мм, в то время как верхние — на 0.5 мм.

Как видно, пользоваться измерительным инструментом несложно, и наличие каких-то определённых навыков и опыта для этого не требуется.

Рекомендации по эксплуатации

Чтобы микрометр прослужил как можно дольше, а его показатели давали верные результаты измерений, необходимо придерживаться некоторых правил эксплуатации.

  • После каждого использования устройства, его следует очищать от пыли и других загрязнений. Наиболее тщательно нужно очищать измерительные поверхности.
  • Чтобы прибор всегда показывал только точные данные, необходимо следить за тем, чтобы устройство сохраняло первоначальную форму. То есть нельзя допускать, чтобы микрометр падал, ударялся или получал иные механические повреждения — это приведёт к сбою микрометра и калибровки.
  • Проводить измерения необходимо только чистых и гладких поверхностей деталей. То есть на поверхности измеряемого предмета не должно быть грязи или наждачной пыли.
  • Переносить устройство лучше всего в специальном защитном футляре или кейсе, которые предназначены для подобных целей и включаются в комплект к микрометру.
  • Хранить прибор следует в сухом месте со стабильной температурой воздуха и минимальной влажностью. Любые температурные перепады могут негативно сказаться на работе устройства.
  • Если инструмент не планируется использовать продолжительное время, то его необходимо протереть специальным составом — авиационным бензином, после чего насухо вытереть и смазать вазелином.
  • Никогда не следует измерять накалённые или горячие элементы, поскольку в этом случае результаты измерений могут оказаться неточными.

Нужно понимать, что точность вычислений устройства в первую очередь зависит от того, как с ним обращаться. Если соблюдать эти рекомендации, то микрометр прослужит не один год, а его работа будет радовать максимально верными вычислениями.

https://youtube.com/watch?v=refwC-OgWIo

Процесс измерения и показания

В начале работы необходимо расположить измерительную деталь между пяткой прибора и микрометрическим винтом. Начать вращение барабана с учетом максимальной близости шпинделя и измеряемого предмета.

При измерениях микрометр находится в левой руке. Во избежание нагрева от температуры тела и искажения результатов держать прибор следует за изолированную часть скобы.

Размеренно и не спеша до соприкосновения с измеряемой поверхностью подводится шпиндель устройства. Крутить его следует по направлению против часовой стрелки относительно торца с нарезкой пока деталь не зайдет в зазор торцов. Далее, необходимо по часовой стрелке довести вращение шпинделя до упора, придерживая в процессе нарезки барабан.

При достижении упора вращение начнет сопровождаться треском. Вращение микрометрического винта следует прекратить и можно приступать к снятию показаний. Освобождается деталь из зажима обратным вращением шпинделя. Точный размер замеряется на барабане с помощью шкалы нониуса.

Показания прибора. При работе по снятию величин измерений механическим прибором требуется некоторая сноровка. Начинаем снимать показания с более крупного разряда цифр и оканчиваем мелким.

Для начала обратим внимание на шкалу стебля на неподвижной части рукоятки. Она содержит две шкалы, которые для комфортного восприятия расположены в позиции остановки края барабана, зафиксируем значение деления нижней шкалы (допустим,. Оно находится в зоне видимости

Так определяется величина первого цифрового показания

Оно находится в зоне видимости. Так определяется величина первого цифрового показания.

В случае когда край барабана сравнялся с делением на верхней шкале, то после запятой необходимо поставить цифру 5, если деление скрыто, тогда цифру 0. После рассматривается шкала на барабане, где находятся сотые доли миллиметра, их необходимо прибавить к десятым долям.

Допустим, верхняя шкала не показала половинчатого деления, соответственно, измерительная величина равна 8,0 мм. Поскольку на барабане с горизонтальным штрихом выпало значение 12, следовательно, 8,0 + 0,12 = 8,12 мм. В случае видимости штриха на верхней шкале стебля 8,5 + 0,12 = 8,62 мм.

Устройство и принцип функционирования

Нутромеры – это инструменты для нахождения внутренних размеров (диаметров отверстий, пазов и т. д.). Они рассчитаны на случаи, когда недоступно применение других инструментов в виде рулетки либо линейки или они недостаточно точны. Рассматриваемые приборы применяют в автосервисах, механосборочных цехах, слесарных мастерских, например, для замера цилиндров двигателя.

Общепринятой классификации данных устройств не создано, однако нутромеры дифференцируют на основе различных параметров. Так, по конструкции их подразделяют на шариковые, цанговые и др., по варианту отсчетного устройства – на индикаторные и др., по контакту с определяемой поверхностью – на кромочные и др. Наиболее известна и обширно распространена классификация, основанная на совокупности конструктивных особенностей нутромеров и их назначении:

  • Конструкция микрометрических моделей, включает соединенные колпачком микрометрический винт и барабан, стебель со сферическим наконечником, предохранительный колпачок, стопор. К тому же их комплектуют несколькими удлинителями и мерой. Головку вариантов с верхним значением измерений более 1250 мм оснащают индикатором часовой конструкции с интервалами делений в 0,01 мм. Рассматриваемые приборы производят на основе ГОСТ 17215. Встречается пять типоразмеров таких моделей с различными рабочими диапазонами: от 50 до 2500 мм. Варианты с часовым индикатором представлены еще в трех типоразмерах с диапазоном от 1250 до 10000 мм. Устройства данного типа ввиду хороших метрологических параметров (точность и погрешность равны около 0,01 и 0,006 мм соответственно) обычно применяют для точной проверки размеров.
  • Индикаторные нутромеры включают два основных узла: индикатор с часовым циферблатом и измерительную часть, представленную двумя стержнями (подвижным, служащим для монтажа сменных вставок, и находящимся в корпусе неподвижным). Кроме того, в корпусе размещена система подвижных рычагов. Индикаторные приборы подходят для отверстий диаметром от 6 мм и имеют погрешность в 0,025-0,15 мм. Движение стержня и цена деления составляют 1-10 и 0,001-0,01 мм соответственно.

Первые простейшие модели нутромеров появились около XVII в. Данные инструменты были выполнены в виде циркулей с отогнутыми наружу концами ножек. Современные начальные модели, называемые штихмассами, представлены трубками либо стержнями с наконечниками сферической формы. Они рассчитаны на крупные отверстия диаметром 100-2500 мм.

Принцип их функционирования состоит в передаче величины перемещения подвижного стержня на отсчетное устройство посредством передаточного механизма. Нутромеры оснащают передаточными механизмами различного типа, что также определяет сферу применения. Так, варианты с рычажными, конусными и клиновыми передачами рассчитаны на небольшие отверстия. Конусные модели (кромочные со стрелочной головкой либо шкалой с нониусом, цанговые, шариковые в трех типоразмерах) применяют для малых отверстий (от 0,2, от 0,95, 3-18 мм соответственно). Большинство индикаторных нутромеров оснащают передаточными устройствами рычажного либо клинового типа. Рабочий диапазон для них составляет от 3 до 1000 и от 18 до 50 мм соответственно.

Еще одним классификационным признаком для нутромеров является количество точек соприкосновения с поверхностью.

Только пассиметры имеют три наконечника, один из которых подвижен. Такие устройства имеют рабочий диапазон от 19 до 120 мм. Кроме того, для дифференциации нутромеров используют форму контактной поверхности (плоская, кромочная и др.).

Отдельно следует отметить электронные модели. Они представлены модификациями микрометрических нутромеров, оснащенными электронной головкой с цифровым отсчетом. Как и для механических аналогов, принцип измерения такими приборами основан на сравнении с мерой, в качестве которой в данном случае применяется высокоточное кольцо.

Виды строительных уровней. Их преимущества и недостатки.

Строительные уровни условно можно поделить на ручные и лазерные. К ручным строительным уровням относятся: пузырьковый и колпачковый (гидроуровень, он же водяной уровень или отвес). Рассмотрим более подробно: для каких работ подходит тот или иной строительный уровень, его достоинства и недостатки.

Пузырьковый (реечный) уровень.

Самый популярный и широко известный измерительный инструмент. Большую популярность завоевали уровни с тремя колбами.

Конструкция: Основной элемент – планка из твердого материала. В нее вмонтированы прозрачные, стеклянные капсулы с пузырьком. На стекле ампулы (колбы) имеются измерительные метки (риски). Воздушный пузырь должен находиться в центре измерительных линий. Корпус бывает деревянный, алюминиевый и пластиковый. Широко используется уровень из алюминия. В колбах с пузырьком, как правило, находится технический спирт. В некоторых уровнях спирт подкрашивают и добавляют неон. Многие модели для удобства работы оснащены магнитами. Каждая отдельная ампула, установлена так, чтобы была возможность замерить горизонтальную и вертикальную плоскость, а также измерить плоскость, расположенную под углом 45 градусов.

Область применения. В профессиональной строительной работе и в быту.

Достоинства: простота в обращении, приемлемая цена, универсальный.

Недостатки: не подходит для масштабных работ.

Как настроить уровень строительный пузырьковый: перед использованием реечного уровня нужно проверить, что все ампулы закреплены и не имеют повреждений. Также необходимо проверить точность уровня. Для этого устанавливаем уровень на ровную горизонтальную плоскость. Делает отметку (риску) на месте пузырька в колбе. Переворачиваем уровень на другую сторону. Пузырек в колбе должен находиться на том же самом месте. Если уровень имеет несколько колб, проверять точность необходимо каждой колбы.

Трубный уровень.

Относится к разновидностям пузырькового уровня.

Конструкция: имеет вид полухомута со встроенной колбой. Может быть складным.

Область применения: используют для укладки труб и профиля.

Достоинства: компактен, имеет не большой вес, укомплектован фиксаторами на поверхности.

Недостатки: узкая специализация.

Перед использованием уровня нужно удостовериться, что все колбы закреплены, и не имеют повреждений. Принцип проверки точности инструмента аналогичен проверке пузырькового уровня.

Гидроуровень (водяной строительный уровень).

Один из точных измерительных инструментов.

Конструкция: две прозрачные трубки со шкалой, соединены мягким и гибким шлангом.

Область применения: для выравнивания горизонтальной поверхности большой площади.

Достоинства: простота в обращении и невысокая стоимость.

Недостатки: узкая специализация. При хранении и при заполнении емкости необходим навык. Для работы требуется компаньон. Работа при температуре выше 0°С.

Перед использованием трубку промывают мыльным раствором, а затем заполняют водой

Важно, чтобы в трубку не попал воздух, иначе замер будет с погрешностью. Точность работы проверяют замером жидкости в двух емкостях

Для облегчения работы, многие модели имеют резиновые ползунки, для отметки уровня. Принцип работы уровня – это сообщающиеся сосуды. Как взаимодействуют сообщающиеся сосуды нам хорошо известно из школьной программы по физике.

Лазерный строительный уровень.

Профессиональный строительный измерительный инструмент. Широкую популярность приобрел электронный лазерный уровень. Это самый точный строительный уровень на сегодняшний день.

Конструкция: в основе уровня – лазерный излучатель. Этот луч располагается параллельно подошве уровня. Лазерный уровень может крепиться на магнитах, штативах, кронштейнах. Многие модели имеют жидкокристаллический экран и встроенную память.

Область применения: используется в профессиональной сфере.

Достоинства: высокая точность измерения. Универсален. Компактен.

Недостатки: сложность в управлении. Высокая цена.

Перед работой с лазерным уровнем в обязательном порядке ознакомитесь с инструкцией. Электронные уровни оснащены системой автоматического выравнивания. Работает уровень на пальчиковых батарейках, поэтому чтобы результаты были точными, следите за состоянием заряда в батарейках.

Удачного выбора!

История возникновения

Первые микрометры появились еще в шестнадцатом веке, но тогда они не находили применения — попросту не существовало таких механизмов, для которых нужна была бы такая большая точность. Все изменилось в девятнадцатом веке, когда появились более продвинутые и точные токарные станки, и другие механизмы. Благодаря развитию машиностроения микрометры снова стали востребованными, и появилось сразу несколько типов этого инструмента.

Мнение эксперта

Торсунов Павел Максимович

Часто вместо микрометра применяют штангенциркуль. Это разные инструменты, но при выполнении некоторых работ они в какой-то степени взаимозаменяемы. К примеру, когда нужно группировать маленькие предметы по размеру. Штангенциркуль не дает таких же точных измерений, но он может использоваться как зажим.

Как пользоваться штангенциркулем

Для работы что с механическим, что с цифровым устройством необходимо знать общие принципы его эксплуатации.

С помощью штангенциркуля можно выполнять такие измерения.

  • Внешний размер детали – длину, ширину, толщину, диаметр.
  • Внутренний размер отверстия или полости – диаметр, ширину, длину.
  • Глубину отверстия или полости.

Также с помощью инструмента можно определить внешний (для наружной) или внутренний (для внутренней) диаметр резьбы. При этом для выяснения номинального диаметра, по которому и маркируется изделие, придется воспользоваться таблицами.

Мерить штангенциркулем любые размеры следует в такой последовательности:

максимально свести (для внешних замеров) или развести (для внутренних замеров) измерительные губки прибора. Для замера глубины выдвинуть глубиномер так, чтобы его конец упирался в дно отверстия, а край штанги – в край отверстия

Важно при этом сохранить соосность отверстия и прибора;
при необходимости зафиксировать ползунок зажимным винтом или просто аккуратно снять/извлечь прибор;
снять показания. Для цифрового прибора достаточно увидеть показания на дисплее, для механического – отметить положение бегунка на разметочной шкале и положение рисок разметки на нониусе.

Вначале отмечается целое число (миллиметры) по основной шкале.

Далее уточняется дробное число, то есть десятые и/или сотые доли миллиметра.

Для этого необходимо определить, какая по счету риска на разметке нониуса точно совпадает с любой из рисок основной шкалы.

Примеры использования штангенциркуля (для сравнения измерение штангенциркулем цифрового типа тех же размеров).

На втором фото хорошо видно совпадение девятой риски шкалы нониуса с делением шкалы штанги. Следовательно, размер составляет 14,9 мм (производитель указывает 15 мм).

При измерении гладкой части стержня болта механический штангенциркуль дает размер 5,4 мм.

Цифровой при таком же измерении дал диаметр 5,3 мм.

При замере длины болта разница также на десятую долю миллиметра – 57,7 мм для механического и 57,61 мм для электронного измерителей.

При замере глубины полости окончание штанги установлено так, чтобы края упирались в край детали, а глубиномер – в дно полости. При этом штангенциркуль установлен максимально ровно, по нормали к дну полости.

Полное совпадение на восьмой риске нониуса, следовательно, глубина составляет 34,8 мм.

При измерении резьбы показания обоих приборов совпали – 5,8 мм

Обратите внимание: чтобы губки измерителя не попали между витками резьбы, необходимо располагать прибор немного под углом, около 35…50 градусов к оси резьбового изделия

Инструкция по применению инструмента — выставляем прибор на ноль

Чтобы произвести необходимые измерительные манипуляции, следует первоначально инструмент установить на ноль. Установка нуля нужна, чтобы получить максимально-точные измерения. Как выставить микрометр на ноль, знают не многие, поэтому имеется инструкция:

  • Очистить поверхность лапок с помощью листа бумаги
  • Свести лапки прибора до упора
  • Зажать фиксирующий винт
  • Риски на шкале должны совпадать с нулевой отметкой
  • Если они не совпадают, тогда при помощи стебля необходимо произвести настройку, воспользовавшись специальным ключом. Такой настроечный ключ прилагается к инструментам

Настройка проводится до момента, пока не будет совпадение рисок с нулевой отметкой. Только после этого можно приступать к проведению измерительных манипуляций. Если в комплектации нет ключа, тогда для настройки ноля понадобится открутить крепление трещотки, затем отцентрировать накатку до момента совмещения с «0». Чтобы зафиксировать в таком положении, нужно закрутить трещотку. После этого прибор готов к работе, и можно перейти на стадию обучения, как надо пользоваться микрометром.

Диапазон измерений

Логично выбрать такой прибор, который позволяет работать с наиболее актуальным для вас диапазоном длин. Поэтому на каждой модели микрометра указывается его диапазон в миллиметрах в виде специальной маркировки. В конструкции микрометра всегда существует ограничение хода микрометрического винта. Максимальная линейная длина, которую можно измерить с его помощью, всегда меньше расстояния от пятки до стопора.

Для распространённых нужд чаще используются модификации с диапазоном 0-25 мм (например, у гладкого микрометра будет маркировка типа МК 25) и 0-75 мм. ГОСТом предусмотрены и другие основные диапазоны до 900 мм включительно. С увеличением диапазона несколько увеличивается и допустимый предел погрешности. Например, МК 25 измеряет с точностью до 2 мкм. У микрометров с наиболее широким диапазоном (600-900 мм) предел погрешности может достигать 10 мкм.

У приборов с диапазоном более 50 мм есть установочная концевая мера, которая позволяет производить более точные измерения путём установки индикатора на нулевое деление. Такой механизм объясняется следующим. Чем больше диапазон измерения, тем существеннее деформация детали, а следовательно, и погрешность. Для того чтобы деформация как можно меньше влияла на результат замера, используются индикаторы двух видов.

  • Часовые – имеют шкалу с ценой деления 0,001. Позволяют регулировать давление на микрометрический винт, чтобы деформация не была слишком большой. Во время проведения замера вращать барабан следует до тех пор, пока стрелка индикатора не будет на нулевом делении шкалы.
  • Цифровые – работают по тому же принципу, но позволяют установить индикатор на ноль более удобным и быстрым способом.

Поверка микрометра

Осуществление поверки микрометра регламентировано методическими указаниями МИ 782−85

Владение методикой поверки чрезвычайно важно как для специалиста, поверяющего инструмент, так и для квалифицированного работника, непосредственно проводящего измерения. Даже в процессе бытовой эксплуатации владение знаниями о поверочных мероприятиях приносит большую пользу

Обнаружение таких отклонений контролируемых параметров, как нарушение параллельности измерительных плоскостей, перекос измерительной плоскости винта и некоторые другие, служат очевидным сигналом о неисправности измерителя.

Микрометр гладкий

В быту чаще всего приходится сталкиваться именно с микрометром гладким. Он наиболее универсален и чаще других встречается в домашних наборах инструментов. Кроме того, умея пользоваться этим инструментом, каждый с легкостью сможет воспользоваться и прибором другого типа.

Устройство

Все механизмы расположены на скобе. На ней жестко закреплена пятка, она служит неподвижным упором в процессе выполнения измерений. На противоположном конце скобы жестко закреплен стебель, он выполнен в виде полого цилиндра.

На стебле нанесена шкала, цена ее деления обычно составляет 0,5 мм. Внутри стебля располагается винтовая пара. Гладкая часть микрометрического винта выходит из стебля в измерительную зону и оканчивается плоской измерительной поверхностью.

Противоположная часть микрометрического винта жестко соединена с барабаном. На барабане нанесена шкала, позволяющая отсчитывать сотые или тысячные доли миллиметра. На практике мы чаще сталкиваемся с микрометрами, имеющими цену деления 0,01 мм.

На внешнем торце барабана размещена трещотка. Она ограничивает крутящий момент, прикладываемый рукой человека при вращении винта. Это позволяет избежать неверных показаний прибора при упругой деформации элементов винтовой пары. Кроме того, трещотка не даст повредить механизм микрометра приложением чрезмерных усилий.

Как мы видим, устройство микрометра довольно простое.

Класс точности

Вопреки распространенному заблуждению, класс точности микрометра определяет не цену деления, а допускаемую погрешность. Например, для МК25 первого класса предел погрешности составляет ±2 мкм (±0,002 мм), а второго класса — уже ±4 мкм (±0,004 мм).

Маркировка

ГОСТ 6507–90 определяет условные обозначения микрометров. Например, уже упомянутый гладкий микрометр с диапазоном измерения от 0 до 25 мм первого класса имеет обозначение «Микрометр МК25−1 ГОСТ 6507–90 ».

ГОСТ — документ, требующий неукоснительного соблюдения. В литературе могут встречаться обозначения этого же микрометра, написанные через пробел (микрометр МК 25) или через дефис (МК-25). Однако единственно верным является слитное написание (МК25).

Микрометр с цифровой индикацией

Имеющиеся в продаже микрометры с цифровой индикацией обладают рядом преимуществ:

  • Наличие электронной начинки в составе прибора и цифровой индикации существенно упрощает процесс измерения и сокращает время, затрачиваемое на считывание показаний.
  • Явным преимуществом производимых согласно ГОСТ 6507–90 цифровых приборов является цена деления 0,001 мм, а также небольшой предел допускаемой погрешности.
  • Современные цифровые модели позволяют проводить не только абсолютные, но и относительные измерения. В любом положении из диапазона измерений можно выставить нулевое значение. Такая функция полезна при техническом контроле, разбраковке деталей, сложных измерениях.
  • Контроль и разбраковку деталей можно проводить еще быстрее, если занести в память прибора пределы допуска. Продвинутые модели обладают такой функцией.
  • Приборы последних лет имеют разъем, позволяющий выводить статистику измерений на компьютер. Эта функция полезна как для анализа серии измерений, так и для составления различных отчетов.
  • Цифровые инструменты универсальны для жителей любой страны мира, поскольку позволяют использовать метрическую или английскую систему измерений.

Есть у цифровых приборов и свои недостатки. Главный из них — меньшая надежность. Любая цифровая техника требует бережного отношения. Классический механический микрометр при случайном падении на пол с большой долей вероятности не пострадает, хотя и для него это плохо. А вот цифровой при таком обращении может отказаться продолжать работу, что потребует ремонта или даже покупки нового прибора.

Также следует помнить, что дешевый цифровой прибор неизвестного производителя может выдавать существенные ошибки в результатах. И ошибки эти могут быть гораздо более критичными, чем ошибки, выдаваемые дешевой механической моделью. Разумеется, речь здесь идет о приборах, фактически не соответствующих ГОСТу. Хотя даже изготовленные по ГОСТу цифровые модели порой демонстрируют загадочное поведение или отказываются работать спустя месяц после начала эксплуатации.

Виды по способу индикации

Есть сразу несколько вариантов того, как определить показания микрометра. Обычно это осуществляется визуально, но можно ориентироваться или на деления разметки, или на цифры на дисплее – в зависимости от исполнения прибора. Рассмотрим вопрос снятия значений подробнее.

Аналоговые

Также часто называются механическими, потому что при их эксплуатации искомые показатели рассчитываются вручную, на основании данных с основной и/или дополнительной шкалы.

У них есть 2 важных практических преимущества:

  • Надежность конструкции – функциональные узлы выполнены из металла, а в процессе сборки хорошо подгоняются друг к другу; поэтому инструмент сложно повредить – он не сломается, если упадет с верстака или случайно ударится обо что-либо.
  • Доступная цена – они давно выпускаются, не содержат в своем составе дорогостоящих элементов и потому обходятся дешево (особенно с учетом долгого срока их службы).

Но есть и минус – не самая высокая точность. Нужно не только знать, как правильно работать микрометром аналогового типа, но и обладать некоторым опытом обращения с ним, чтобы фиксировать доли мм. Поэтому новичкам мы бы рекомендовали следующие модели.

Лазерные

На данный момент считаются самыми совершенными. Считывают все показания автоматически (что максимально удобно и быстро) по следующей схеме:

  • узконаправленный луч проходит по всем поверхностям заготовки;
  • определяется разница отклонений;
  • на основании этого на дисплей выводится результат в виде итоговых цифр.

Пользователь практически не участвует в процессе, что исключает ошибку человеческого фактора

Это удобно, но важно понимать, что сам принцип измерения размеров микрометром лазерного типа подразумевает тонкую настройку программы, поэтому оператор все-таки нужен

При этом стоит такие модели дороже всего и требуют специализированного ухода, что несколько ограничивает сферу их эксплуатации

Как правило, их применяют не в быту, а в лабораторных условиях, когда важно обеспечить прецизионную точность

Цифровые

Ключевая их особенность – наличие дисплея, на который выводятся результаты. А главное преимущество – в показаниях вплоть до сотых и тысячных долей мм. Недостаток в том, что их сравнительно легко вывести из строя, намеренно или случайно повредив уже упомянутый экран. В остальном же им присущи те же свойства, что и механическим, и даже порядок измерения микрометром остается стандартным.

Рычажные

Они же часовые или стрелочные. Это улучшенная версия аналоговых. Их усовершенствовали, добавив специальную шкалу с наглядным указателем. Последний обеспечивает большую точность фиксации необходимых параметров. Минус только в том, что хватит одного случайного, но ощутимого удара по корпусу или падения с верстака, чтобы ориентир сбился, и тогда прибор придется отдавать в ремонт.

Ну и цена таких моделей в 1,5-2 раза выше базовых механических, хотя все равно считается достаточно доступной для покупки в бытовых целях (особенно если предполагается частая эксплуатация инструмента).

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий