Алюминий

Цикл плавления отражательной печи

Изменение температурных параметров и потребляемой мощности горелок в отражательной плавильной печи с прямой загрузкой показаны на рисунке 4.

Рисунок 4 – Изменение температурных параметров и
потребляемой мощности горелок в цикле плавления отражательной печи

В начале цикла плавления холодный металл загружается в горячую печь. В результате этого температура футеровки значительно снижается. Твердый металл, который загружен в печь, очень быстро поглощает тепло от газового потока продуктов сгорания. Поток горячих газов во многих случаях ударяет непосредственно в алюминиевую шихту (рисунок 5). На этом этапе общая площадь поверхности шихты очень большая и поэтому происходит эффективная передача тепла от горячих газов продуктов сгорания к шихте. По этой причине отходящие газы печи имеют относительно низкую температуру (см. рисунок 4).

Рисунок 5 – Прохождение горячего потока продуктов сгорания горелки
через алюминиевую шихту: а) полное; б) частичное

По мере нагрева твердой шиты интенсивность ее теплообмена с горячими газами продуктов сгорания снижается. Потребляемая мощность горелок также снижается. Шихта начинает плавиться и принимать плоскую форму (рисунок 6). На этой стадии плавильного цикла температура выходящих из печи газов резко возрастает из-за снижения перепада температуры между горячими газами и металлом, а также уменьшения площади контакта их взаимодействия.

Рисунок 6 – Воздействие горячих газов горелки на плоский расплав в печи

Применение

Файл:Aluminum Metal.jpg

Кусок алюминия и американская монетка.

Широко применяется как конструкционный материал. Основные достоинства алюминия в этом качестве — лёгкость, податливость штамповке, коррозионная стойкость (на воздухе алюминий мгновенно покрывается прочной плёнкой Al2O3, которая препятствует его дальнейшему окислению), высокая теплопроводность, неядовитость его соединений. В частности, эти свойства сделали алюминий чрезвычайно популярным при производстве кухонной посуды, алюминиевая фольга в пищевой промышленности и для упаковки.

Основной недостаток алюминия как конструкционного материала — малая прочность, поэтому его обычно сплавляют с небольшим количеством меди и магния (сплав называется дюралюминий).

Электропроводность алюминия сравнима с медью, при этом алюминий дешевле. Поэтому он широко применяется в электротехнике для изготовления проводов, их экранирования и даже в микроэлектронике при изготовлении проводников в чипах. Правда, у алюминия как электротехнического материала есть неприятное свойство — из-за прочной оксидной плёнки его тяжело паять.

  • Благодаря комплексу свойств широко распространён в тепловом оборудовании.
  • В производстве строительных материалов как газообразующий агент.
  • Алитированием придают коррозионную и окалиностойкость стальным и другим сплавам, например клапанам поршневых ДВС, лопаткам турбин, теплообменной аппаратуре, а также заменяют цинкование.
  • Сульфид алюминия используется для производства сероводорода.
  • Идут исследования по разработке пенистого алюминия как особо прочного и лёгкого материала.

В качестве восстановителя

  • Как компонент термита, смесей для алюмотермии
  • Алюминий применяют для восстановления редких металлов из их оксидов или галогенидов.

Сплавы на основе алюминия

В качестве конструкционного материала обычно используют не чистый алюминий, а разные сплавы на его основе.

  • Алюминиево-магниевые сплавы обладают высокой коррозионной стойкостью и хорошо свариваются; из них делают, например, корпуса быстроходных судов.
  • Алюминиево-марганцевые сплавы во многом аналогичны алюминиево-магниевым.
  • Алюминиево-медные сплавы (в частности, дюралюминий) можно подвергать термообработке, что намного повышает их прочность. К сожалению, термообработанные материалы нельзя сваривать, поэтому детали самолётов до сих пор соединяют заклёпками.
  • Алюминиево-кремниевые сплавы (силумины) лучше всего подходят для литья. Из них часто отливают корпуса разных механизмов.
  • Комплексные сплавы на основе алюминия: авиаль.
  • Алюминий переходит в сверхпроводящее состояние при температуре 1,2 Кельвина.

Алюминий как добавка в другие сплавы

Алюминий является важным компонентом многих сплавов. Например, в алюминиевых бронзах основные компоненты — медь и алюминий. В магниевых сплавах в качестве добавки чаще всего используется алюминий. Для изготовления спиралей в электронагревательных приборов используют (наряду с другими сплавами) фехраль (Fe, Cr, Al).

Ювелирные изделия

Когда алюминий был очень дорог, из него делали разнообразные ювелирные изделия. Мода на них сразу прошла, когда появились новые технологии его получения, во много раз снизившие себестоимость. Сейчас алюминий иногда используют в производстве бижутерии.

Алюминий и его соединения в ракетной технике

Алюминий и его соединения используются в качестве высокоэффективного ракетного горючего в двухкомпонентных ракетных топливах и в качестве горючего компонента в твердых ракетных топливах. Следующие соединения алюминия представляют наибольший практический интерес как ракетное горючее:

  • Алюминий: горючее в ракетных топливах. Применяется в виде порошка и суспензий в углеводородах и др.
  • Гидрид алюминия.
  • Боранат алюминия.
  • Триметилалюминий.
  • Триэтилалюминий.
  • Трипропилалюминий.

Теоретические характеристики топлив, образованных гидридом алюминия с различными окислителями.

ОкислительУдельная тяга(Р1,сек)Температура сгорания °СПлотность топлива г/см3Прирост скорости, ΔVид,25, м/секВесовое содерж.горючего %
Фтор348,4 сек5009°С1,5045328 м/сек25%
Тетрафторгидразин327,4 сек4758°С1,1934434 м/сек19%
ClF3287,7 сек4402°С1,7644762 м/сек20%
ClF5303,7 сек4604°С1,6914922 м/сек20%
Перхлорилфторид293,7 сек3788°С1,5894617 м/сек47%
Окись фтора326,5 сек4067°С1,5115004 м/сек38,5%
Кислород310,8 сек4028°С1,3124428 м/сек56%
Перекись водорода318,4 сек3561°С1,4664806 м/сек52%
N2O4300,5 сек3906°С1,4674537 м/сек47%
Азотная кислота301,3 сек3720°С1,4964595 м/сек49%

Выбор формы для литья

При выборе формы для отливки алюминия домашний мастер должен понимать, а для какой цели он обрабатывает алюминий. Если будущая отливка будет предназначена для использования в качестве припоя, то использовать, какие-то специальные формы, нет необходимости. Для этого можно использовать металлический лист, на котором можно остудить расплавленный металл.

Но если возникает необходимость получения даже простой детали, то мастер должен определиться с типом формы для литья.

Форму можно изготовить из гипса. Для этого, гипс в жидком состоянии заливают в обработанную маслом форму. После того, как начнет застывать, в него устанавливают литейную модель. Для того, чтобы в форму можно было залить расплавленный металл необходимо сформировать литник. Для этого в форму устанавливают цилиндрическую деталь. Формы бывают разъемные и нет. Процесс изготовления разъемной формы усложняется тем, что модель будет находиться в двух полуформах. После застывания их разделяют, удаляют модель и соединяют снова. Форма готова к работе.

Кокиль для литья алюминия

Для получения качественных отливок целесообразно использовать металлические формы (кокили), но изготавливать их целесообразно только в заводских условиях.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Химические свойства алюминия

С точки зрения химии, рассматриваемый металл — сильный восстановитель, который способен проявлять высокую химическую активность, будучи чистым веществом. Главное — это устранить оксидную пленку. В этом случае активность резко возрастает.

Химические свойства алюминия как простого вещества определяются его способностью вступать в реакции с:

  • кислотами;
  • щелочами;
  • галогенами;
  • серой.

С водой он не взаимодействует при обычных условиях. При этом из галогенов без нагревания реагирует только с йодом. Для остальных реакций нужна температура.

Можно привести примеры, иллюстрирующие химические свойства алюминия. Уравнения реакций взаимодействия с:

  • кислотами — AL + HCL = AlCL3 + H2;
  • щелочами — 2Al + 6H2O + 2NaOH = Na + 3Н2;
  • галогенами — AL + Hal = ALHal3;
  • серой — 2AL + 3S = AL2S3.

В целом, самое главное свойство рассматриваемого вещества — это высокая способность к восстановлению других элементов из их соединений.

Производство

производство алюминия Одна красивая, но, вероятно, неправдоподобная легенда из «Historia naturalis«

гласит, что однажды к римскому императору Тиберию (42 год до н. э. — 37 год н. э.) пришёл ювелир с металли­ческой, небьющейся обеденной тарелкой, изготовленной, якобы из глинозёма — Al2O3. Тарелка была очень светлой и блестела, как серебро. По всем признакам она должна быть алюминиевой. При этом ювелир утверждал, что только он и боги знают, как получить этот металл из глины. Тиберий, опа­саясь, что металл из легкодоступной глины может обесценить золото и серебро, приказал, на всякий случай, отрубить чело­веку голову. Очевидно, данная легенда весьма сомнительна, так как само­родный алюминий в природе не встречается в силу своей высокой активности и во времена Рим­ской империи не могло быть технических средств, которые позволили бы извлечь алюми­ний из глинозёма.

Лишь почти через 2000 лет — в 1825 году, датский физик Ханс Христиан Эрстед получил несколько миллиграммов металлического алюминия, а в 1827 году Фридрих Вёлер смог выделить крупинки алюминия, которые, однако, на воздухе немедленно покрывались тончайшей пленкой оксида алюминия.

До конца XIX века алюминий в промышленных масштабах не производился.

Только в 1854 году Анри Сент-Клер Девиль изобрёл первый способ промышленного производства алюминия, основанный на вытеснении алюминия металлическим натрием из двойного хлорида натрия и алюминия NaCl·AlCl3. В 1855 году был получен первый слиток металла массой 6—8 кг. За 36 лет применения, с 1855 по 1890 год, способом Сент-Клер Девиля было получено 200 тонн металлического алюминия. В 1856 году он же получил алюминий электролизом расплава хлорида натрия-алюминия.

В 1885 году, основываясь на технологии, предложенной русским ученым Николаем Бекетовым, был построен завод по производству алюминия в немецком городе Гмелингеме. Технология Бекетова мало чем отличалась от способа Девиля, но была проще и заключалась во взаимодействии между криолитом (Na3AlF6) и магнием. За пять лет на этом заводе было получено около 58 т алюминия — более четверти всего мирового производства металла химическим путем в период с 1854 по 1890 год.

Метод, изобретённый почти одновременно Чарльзом Холлом во Франции и Полем Эру в США в 1886 году и основанный на получении алюминия электролизом глинозема, растворённого в расплавленном криолите, положил начало современному способу производства алюминия. С тех пор, в связи с усовершенствованием электротехники, производство алюминия совершенствовалось. Заметный вклад в развитие производства глинозема внесли русские ученые К. И. Байер, Д. А. Пеняков, А. Н. Кузнецов, Е. И. Жуковский, А. А. Яковкин и др.

Первый алюминиевый завод в России был построен в 1932 году в Волхове. Металлургическая промышленность СССР в 1939 году производила 47,7 тыс.тонн алюминия, ещё 2,2 тыс.тонн импортировалось.

Вторая мировая война значительно стимулировала производство алюминия. Так, в 1939 году общемировое его производство, без учёта СССР, составляло 620 тыс. т, но уже к 1943 году выросло до 1,9 млн т.

К 1956 году в мире производилось 3,4 млн т первичного алюминия, в 1965 году — 5,4 млн т, в 1980 году — 16,1 млн т, в 1990 году — 18 млн т.

В 2007 году в мире было произведено 38 млн т первичного алюминимя, а в 2008 — 39,7 млн т. Лидерами производства являлись: Китай (в 2007 году произвёл 12,60 млн т, а в 2008 — 13,50 млн т), Россия (3,96/4,20), Канада (3,09/3,10), США (2,55/2,64), Австралия (1,96/1,96), Бразилия (1,66/1,66), Индия (1,22/1,30), Норвегия (1,30/1,10), ОАЭ (0,89/0,92), Бахрейн (0,87/0,87), ЮАР (0,90/0,85), Исландия (0,40/0,79), Германия (0,55/0,59), Венесуэла (0,61/0,55), Мозамбик (0,56/055), Таджикистан (0,42/0,42).

В России фактическим монополистом по производству алюминия является ОАО «Русский алюминий», на который приходится около 13 % мирового рынка алюминия и 16 % глинозёма.

Мировые запасы бокситов практически безграничны, то есть несоизмеримы с динамикой спроса. Существующие мощности могут производить до 44,3 млн т первичного алюминия в год. Следует также учитывать, что в будущем некоторые из применений алюминия могут быть переориентированы на использование, например, композитных материалов.

Распространенность в природе

По степени распространенности в земле алюминий занимает лидирующую позицию среди всех металлов и третью между элементами периодической таблицы. По исследованиям разных ученых его концентрация в почве колеблется от 7,4 до 8,1%. Молярная масса атома — 26,9815386 г/моль. У вещества высокая химическая активность, поэтому чаще всего оно встречается в виде соединений.

К природным минералам алюминия относятся:

  • хризоберилл или александрит;
  • бокситы;
  • берилл, аквамарин, изумруд;
  • нефелины;
  • каолинит;
  • алуниты;
  • полевые шпаты;
  • глиноземы — смесь каолинов с песком, магнезитом или известняком.

Но в специфических условиях — жерлах вулканов, например, есть незначительное количество самородного металла белого цвета. Содержат его и природные воды, но вещество приобретает вид малотоксичных соединений. Тип аниона или катиона зависит только от кислотности окружающей среды.

Алюминий для раскисления стали

Марки алюминия в ГОСТ 295

Алюминий, который применяют для раскисления стали, а также производства ферросплавов и порошков для алюминотермии также подразделяется на марки. Требования к этим маркам алюминия устанавливает ГОСТ 295-98. Этот алюминий изготавливают как из первичного сырья, так и из лома и отходов алюминиевых сплавов. Производится в чушках и гранулах. Для этих марок алюминия характерно очень большое содержание примесей – в общем количестве до 13 %.

Таблица 7 – Марки алюминия для раскисления, производства ферросплавов и алюмотермии

  1. Properties of Pure Aluminum / A. Sverdlin //Handbook of Aluminium: Vol.1 Physical metallurgy and Processes, ed. G.E. Davis, D.S. MacKenzie, 2003
  2. Aluminum and Aluminum Alloys / ed. J.R. Davis – ASM International, 1993
  3. The Aluminium Industry /James F King – Woodhead Publishing, 2001
  4. https://www.aluminum.org/sites/default/files/aecd16.pdf
  5. Aluminium Alloy Castings. Properties, Processes and Applications / J.G. Kaufman, E.L. Rooy – ASM International, 2004

Температура плавления металлов

Металлы и неметаллы

Любой кусок металла, например, алюминия, содержит миллионы отдельных кристаллов, которые называются зернами. Каждое зерно имеет свою уникальную ориентацию атомной решетки, но все вместе зерна ориентированы внутри этого куска случайным образом. Такая структура называется поликристаллической.

Аморфные материалы, например, стекло,  отличаются от кристаллических материалов, например, алюминия, по двум важным отличиям, которые связаны друг с другом:

  • отсутствие дальнего порядка молекулярной структуры
  • различия в характере плавления и термического расширения.

Различие молекулярной структуры можно видеть на рисунке 1. Слева показана плотно упакованная и упорядоченная кристаллическая структура. Аморфный материал показан справа: менее плотная структура со случайным расположением атомов.

Рисунок 1 – Структура кристаллических (а) и аморфных (б)  материалов.
Кристаллическая структура: упорядоченная, повторяющаяся и плотная,
аморфная структура – более свободно упакованная
с беспорядочным расположением атомов.

Плавление металлов

Это различие в структуре проявляется при плавлении металлов, в том числе, плавлении алюминия различной чистоты и его сплавов. Менее плотно упакованные атомы дают увеличение объема (снижение плотности) по сравнению с тем же металлом в твердом кристаллическом состоянии.

Металлы при плавлении испытывают увеличение объема. У чистых металлов это объемное изменение происходит весьма резко и при постоянной температуре – температуре плавления, как это показано на рисунке 2. Это изменение представляет собой разрыв между наклонными линиями по обе стороны от точки плавления. Обе эти наклонные линии характеризуют температурное расширение металла, которое обычно является различным в жидком и твердом состоянии.

Рисунок 2 – Характерное изменение объема чистого металла
по сравнению с изменением объема аморфного материала :
Tg – температура стеклования (перехода жидкого состояния в твердое);
Tm – температура плавления

Теплота плавления

С этим резким увеличением объема при переходе металла из твердого состояния в жидкое  связано определенное количество тепла, которое называется скрытой теплотой плавления. Это тепло заставляет атомы терять плотную и упорядоченное кристаллическую структуру. Этот процесс является обратимым, он работает в обоих направлениях – и при нагреве, и при охлаждении.

Равновесная температура плавления

Как было показано выше, чистые кристаллические вещества, например, чистые металлы, имеют характерную температуру плавления, которую часто называют «точкой плавления».  При этой температуре это чистое твердое кристаллическое вещество плавится и становится жидкостью. Переход между твердым и жидким состоянием для малых образцов чистых металлов настолько мал, что может измеряться с точностью 0,1 ºС.

Жидкости имеют характерную температуру, при которой они превращаются в твердое вещество. Эту температуру называют температурой затвердевания или точкой затвердевания. Теоретически – в равновесных условиях – равновесная температура плавления твердого вещества является той же самой, что и равновесная температура его затвердевания. На практике можно наблюдать небольшие различия между этими величинами (рисунок 3).

Рисунок 3 –  Кривые охлаждения и нагрева чистого металла.
Видны явления переохлаждения при охлаждении и перегрева при нагреве.
В начале затвердевания наблюдается впадина на кривой охлаждения,
что объясняется замедленным началом кристаллизации

Температуры ликвидус и солидус

  • Температура начала плавления называется температурой солидус (или точкой солидус)
  • Температура окончания плавления – температурой ликвидус (или точкой ликвидус).

«Солидус» означает, понятно, твердый, а «ликвидус» – жидкий: при температуре солидуса весь сплав еще твердый, а при температуре ликвидуса – весь уже жидкий.

При затвердевании этого сплава из жидкого состояния температура начала кристаллизации (затвердевания) будет та же температурой ликвидус, а окончания кристаллизации – та же температура солидус. При температуре сплава между его температурами солидуса и ликвидуса он находится в полужидком-полутвердом, кашеобразном состоянии.

Коррозия алюминия и методы его защиты

Алюминий и его сплавы отличаются отличной устойчивостью к разрушениям различного характера. Однако, несмотря на это — коррозия алюминия представляет собой не такое уж и редкое явление. Различные формы коррозии представляют собой основную причину порчи этих материалов. Для борьбы с разрушительными процессами необходимо обязательно понимать факторы, которые являются причиной их появления.

Коррозия алюминия представляет собой реакцию, которая имеет место между металлом и окружающей средой. Этот процесс может иметь как естественное, так и химическое происхождение. Самой распространенной формой разрушения металла можно назвать появление на его поверхности процессов ржавления.

Особенностью всех видов металлов можно назвать их свойство вступать в реакцию с водой и окружающей средой. Отличием для каждого вида металла считается только интенсивность данного процесса. К примеру, у благородных металлов типа золота скорость такой реакции не будет слишком быстрой, а вот железо, в том числе и алюминий, будут реагировать на воздействия такого характера достаточно быстро.

Можно выделить два фактора, которые оказывают непосредственное влияние на интенсивность протекания процесса коррозии. Одним из них можно назвать степень агрессивности окружающей среды, а вторым металлургическую или химическую структуру. Атмосфере, которая нас окружает, всегда характерен определенный уровень влажности. Кроме того, ей характерен определенный уровень загрязнений и отходов.

Если учесть, что свойства атмосферы часто определяются регионом и степенью индустриализации, на сегодняшний день можно выделить:

  • сельская местность (малая степень загрязнений и средний уровень влажности);
  • приморские области (средняя степень загрязнений и высокий уровень влажности);
  • городская местность (средний уровень влажности и средний уровень продуктов распадов жидкого топлива, серы и окислов углерода);
  • промышленные и индустриальные зоны (большое количество серы, окислов углеродов и кислот, а также средний уровень влажности)

Для большинства случаев, кислоты неорганического типа, даже при низкой концентрации смогут растворить алюминий. И даже натуральная пленка оксида алюминия не сможет стать достаточной защитой от возникновения коррозийных процессов.

Самыми мощными растворителями можно назвать фтор, калий и натрий. Кроме того, алюминию характерна довольно низкая сопротивляемость к соединениям хлора и брома. Весьма агрессивны к различным сплавам алюминиевых металлов, являются известковые и цементные растворы.

Можно выделить несколько разновидностей проявления коррозии алюминия и его сплавов:

  1. Поверхностная. Данный тип разрушения встречается чаще всего и является наименее вредоносным. Его легче всего заметить на поверхности. Это дает возможность своевременно использовать предохранительные средства. Поверхностные разрушения очень часто встречаются на анодированных профилях для строительства.
  2. Локальная. Такие разрушения проявляются в виде форм, углублений и пятен. Такой тип коррозии бывает поверхностного и междукристаллического типа. Разрушения такого характера являются особенно опасными, по причине того, что их достаточно сложно обнаружить. Такая коррозия очень часто разрушает именно труднодоступные части конструкций и узлов.
  3. Нитеподобная или филигранная. Этот вид разрушения алюминия часто появляется под покрытиями органического типа, а также на граничных поверхностях обработки. Нитеподобная коррозия появляется в ослабленных местах повреждения органического покрытия или краях отверстий;

Довольно часто, естественных антикоррозийных способностей алюминия и его сплавов для защиты от разрушений бывает недостаточно. А длительный период эксплуатации изделий из этих металлов, в обязательном порядке потребует использования дополнительных методов защиты. К самым частым методам протекции металлов от коррозии можно отнести:

  • анодирование окисление (исследования немецких специалистов показывают, что данный вид защиты используется на 15% от общего количества производства строительных профилей в мире);
  • покрытие поверхности металлов порошковыми составами;
  • защита от контакта с другими металлами

Анодирование

Анодированное покрытие представляет собой покрытие, которое создает на поверхности алюминия прочную пленку из оксида алюминия, которая не поддается воздействию агрессивных сред. Такая обработка позволяет создать на поверхности металла такой слой пленки, который просто не оставляет алюминию возможности контактировать с внешней средой и ограждает его от процессов окисления.

Алюминий и его сплавы

Алюминий – металл серебристо-белого цвета, характеризуется низкой плотностью, высокой электропроводностью, температура плавления 660° С. Механические свойства алюминия невысокие, поэтому в чистом виде как конструкционный материал применяется ограниченно.

Для повышения физико-механических и технологических свойств алюминий легируют различными элементами (Cu, Сr, Mg, Si, Zn, Mn, Ni).

В зависимости от содержания постоянных примесей различают:

  • алюминий особой чистоты марки А999 (0,001 % примесей);
  • алюминий высокой чистоты – А935, А99, А97, А95 (0,005…0,5 % примесей);
  • технический алюминий – А35, А3, А7, А5, А0 (0,15…0,5 % примесей).

Технический алюминий выпускают в виде полуфабрикатов для дальнейшей переработки в изделия. Алюминий высокой чистоты применяют для изготовления фольги, токопроводящих и кабельных изделий.

Сплавы на основе алюминия классифицируются по следующим признакам:

  • по технологии изготовления;
  • по степени упрочнения после термической обработки;
  • по эксплуатационным свойствам.

Деформируемые сплавы

К неупрочняемым термической обработкой относятся сплавы:

  • алюминия с марганцем марки АМц;
  • алюминия с магнием марок АМг; АМгЗ, АМг5В, АМг5П, АМг6.

Эти сплавы обладают высокой пластичностью, коррозионной стойкостью, хорошо штампуются и свариваются, но имеют невысокую прочность. Из них изготовляют бензиновые баки, проволоку, заклепки, а также сварные резервуары для жидкостей и газов, детали вагонов.

В группе деформируемых алюминиевых сплавов, упрочняемых термической обработкой, различают сплавы:

  • нормальной прочности;
  • высокопрочные сплавы;
  • жаропрочные сплавы;
  • сплавы для ковки и штамповки.

Сплавы нормальной прочности

К сплавам нормальной прочности относятся сплавы системы Алюминий + Медь + Магний (дуралюмины, дюралюмины), которые маркируются буквой «Д». Дюралюмины (Д1, Д16, Д18) характеризуются высокой прочностью, достаточной твердостью и вязкостью. Для упрочнения сплавов применяют закалку с последующим охлаждением в воде. Закаленные дуралюмины подвергаются старению, что способствует увеличению их коррозионной стойкости.

Дуралюмины широко используются в авиастроении: из сплава Д1 изготовляют лопасти винтов, из Д16 – несущие элементы фюзеляжей самолетов, сплав Д18 – один из основных заклепочных материалов.

Высокопрочные сплавы

Высокопрочные сплавы алюминия (В93, В95, В96) относятся к системе Алюминий + Цинк + Магний + Медь. В качестве легирующих добавок используют марганец и хром, которые увеличивают коррозионную стойкость и эффект старения сплава. Для достижения требуемых прочностных свойств, сплавы закаливают с последующим старением. Высокопрочные сплавы по своим прочностным показателям превосходят дюралюмины, однако менее пластичны и более чувствительны к концентраторам напряжений (надрезам). Из этих сплавов изготовляют высоконагруженные наружные конструкции в авиастроении – детали каркасов, шасси и обшивки.

Жаропрочные сплавы

Жаропрочные сплавы алюминия (АК4-1, Д20) имеют сложный химический состав, легированы железом, никелем, медью и другими элементами. Жаропрочность сплавам придает легирование, замедляющее диффузионные процессы.

Детали из жаропрочных сплавов используются после закалки и искусственного старения и могут эксплуатироваться при температуре до 300° С.

Сплавы для ковки и штамповки

Сплавы для ковки и штамповки (АК2, АК4, АК6, АК8) относятся к системе Алюминий + Медь + Магний с добавками кремния. Сплавы применяют после закалки и старения для изготовления средненагруженных деталей сложной формы (АК6) и высоконагруженных штампованных деталей – поршни, лопасти винтов, крыльчатки насосов и др.

Литейные сплавы

Для изготовления деталей методом литья применяют алюминиевые сплавы систем Al-Si, Al-Cu, Al-Mg. Для улучшения механических свойств сплавы легируют титаном, бором, ванадием. Главным достоинством литейных сплавов является высокая жидкотекучесть, небольшая усадка, хорошие механические свойства.

Источник

Термины и определения

Марки алюминия

Нелегированный алюминий – это алюминий без легирующих элементов при содержании алюминия не менее 99,00%, остальное – примеси. Примесь – металлический или неметаллический элемент, присутствующий в металле, минимальное содержание которого не контролируется.

Рафинированный алюминий – нелегированный алюминий высокой чистоты (содержание алюминия не менее 99,950%), который получают в результате специальных металлургических обработок.

Первичный алюминий – нелегированный алюминий:

  • который произведен из глинозема, обычно электролизом, и
  • который имеет содержание алюминия не менее 99,70%.

Нелегированный алюминий подразделяется на марки в зависимости от содержания в нем примесей.

Русскому термину “марка” соответствует английский термин “grade” .

Алюминиевые сплавы

Алюминиевый сплав – это алюминий:

  • который содержит легирующие элементы,
  • в котором содержание алюминия выше, чем любого другого элемента и
  • в котором, содержание алюминия не более 99,00%

Легирующий элемент – это металлический или неметаллический элемент, содержание которого контролируется в заданном интервале, чтобы обеспечивать сплаву заданные специфические свойства. Обычно легирующие элементы преднамеренно добавляют в расплав алюминия.

Легированный алюминий подразделяется на сплавы.

Каждый алюминиевый сплав имеет свое обозначение, например, сплав АД31 или сплав 2020. Это обозначение сплава однозначно определяет его химический состав, в том числе, интервалы содержания легирующих элементов и допуски на максимальное содержание примесей. Необходимо отметить, что иногда, в том числе, в стандартах, применяется выражение “марка сплава”. Однако, чем отличается смысл выражений “марка сплава” и “сплав” совершенно не понятно.

Русскому термину “сплав” соответствует английский термин “alloy” .

Кинетическая и потенциальная энергия

Чтобы понять, что такое плавление в физике, необходимо ясно представлять соотношение кинетической и потенциальной энергии в твердых и жидких телах.

Потенциальная энергия характеризует работу, которую нужно затратить, чтобы распылить данное тело в пространстве на составляющие его частицы. Для описания этой величины вводят понятие энергии связи, которая обозначает работу, необходимую для того, чтобы оторвать от тела один атом или молекулу и удалить его/ее на бесконечность. Например, типичные значения энергии связи для твердых тел составляют несколько электрон-вольт, эти же значения для жидкостей на порядок меньше.

Кинетическая энергия характеризует интенсивность движения атомов и молекул. В случае конденсированных сред эта энергия прямо пропорционально зависит от температуры.

В твердых телах кинетическая энергия при комнатных температурах составляет несколько сотых электрон-вольт, то есть она в 100 раз меньше потенциальной. Атомы и молекулы в твердых телах находятся как бы в потенциальной яме и колеблются около устойчивых определенных положений. Выбраться они могут из этих положений, если флуктуации кинетической энергии окажутся значительными, или если сама потенциальная яма невелика, например, когда поблизости имеется какой-либо дефект.

Кинетическая энергия атомов и молекул в жидкости приблизительно равна их потенциальной энергии, то есть составляет несколько десятых электрон-вольт при комнатной температуре. Это означает, что каждая частица, составляющая жидкость, постоянно перепрыгивает из одного места в другое. Хорошим доказательством этого факта является Броуновское движение.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий