Ферритная фаза

Особенности фазовых превращений в сталях аустенитного типа

Существует сразу несколько разновидностей превращений, которые могут протекать в хромоникелевого типах стали.

Среди них выделяются 3:

  • образование в аустенитной основе δ-феррита при высокотемпературном нагреве;
  • выделение избыточных карбидных фаз и σ-фазы при нагреве в интервале в интервале 450-900 ºС;
  • образование α-фазы мартенситного типа при холодной пластической деформации или охлаждении ниже комнатной температуры.

Говоря о фазовых превращениях в стали, нельзя не коснуться такой важной темы, как появление межкристаллической коррозии. Склонность к ней особенно ярко проявляется, когда происходит выделение карбидных фаз. Это отражается на том, как будет проводиться оценка стали

Стоит отталкиваться от термокинетических параметров образования в стали карбидов

Это отражается на том, как будет проводиться оценка стали. Стоит отталкиваться от термокинетических параметров образования в стали карбидов.

Для каждой разновидности материала определяется время, которое требуется для начала процесса межкристаллической коррозии. Оно привязано к проценту содержания углерода в твердом растворе. Чем выше содержание углерода, тем при большей температуре будет возникать межкристаллическая коррозия. Таким образом, удается применять различные варианты стали в областях, которые подвержены высоким температурам.

Зависимость времени и процента содержания углерода представлено в таблице ниже:

Содержание углерода в твердом растворе Время появления межкристаллической коррозии
0,084 % До 1 минуты
0,054 % До 10 минут
0,021 % Свыше 100 минут.

Чем меньше процент содержания углерода, тем ниже будет температура, связанная с показателями минимальной изотермической выдержки. Таким образом, при покупке стоит сразу понимать, в каких температурных условиях вы будете использовать такого типа материал. Межкристаллическая коррозия способна оказать серьезное негативное воздействие на материал и привести к его постепенному разрушению, потому выбирать стоит внимательно, ориентируясь на данные приведенной выше таблицы.

Ферритная фаза

Изменение механических свойств закаленной стали 22 – 11 – 3 W в зависимости от.  

Ферритная фаза и карбиды располагаются отдельными участками на стыке аустенитных зерен.  

Ферритная фаза в хромоникелевых сталях с молибденом снижает коррозионную стойкость металла в некоторых условиях производства мочевины или целлюлозы.  

Ферритная фаза в бейните является пересыщенным раствором углерода в а-железе.  

Схема промежуточного ( бейнитного превращения.  

Ферритная фаза в бейните является пересыщенным раствором углерода в а-железе. Обогащенный углеродом аустенит, обладая высокой устойчивостью, нередко не претерпевает превращения и сохраняется как остаточный аустенит с повышенной по сравнению с исходной концентрацией углерода. Таким образом, в результате промежуточного превращения структура стали в наиболее общем случае состоит из а-фазы ( феррита), пересыщенной углеродом, частиц цементита, образовавшихся в результате выделения из аустенита и при распаде мартенсита, и остаточного аустенита с концентрацией углерода, отличной от средней.  

ИК-спектры поглощения продуктов обработки совместно осажценных Mg ( OH, Сг ( ОН3 и a – FeOOll.| ИК-спектры поглощения продуктов обработки совместно осажденных Mg ( ОН2, Р – Со ( ОН г, v – АЮОН и a – FeOOH.| ИК-спектры поглощения продуктов обработки совместно осажденных р – Со ( OH s, Ni ( OH2, Си ( ОН2, Сг ( ОН3 и a – FeOOH.  

Ферритная фаза ( полосы 600 и 450 см-1) появляется уже при 650 С.  

Наличие ферритной фазы оказывает незначительное влияние на коррозионную стойкость стали, если в этой фазе и в пограничных зонах не происходит структурных изменений.  

Количество ферритной фазы в швах составляет 15 – 60 % и зависит не только от применяемых сварочных материалов, но и от доли участия свариваемого материала в металле шва, от колебаний химического состава в пределах марки. Самый высокий процент ферритной фазы в швах наблюдается при автоматической сварке под флюсом встык без разделки кромок проволокой Св – 06Х21Н7БТ Благодаря высокому содержанию феррита швы обладают достаточной стойкостью против образования горячих трещин. Изменение содержания ферритной фазы в шве за счет легирования или термообработки приводит к существенному изменению его механических свойств. Пределы текучести и прочности при достаточно высокой пластичности и вязкости шва достигают максимума при равном процентном содержании в нем аустенитной и ферритной фаз.  

Наличие ферритной фазы в аустенитной стали повышает ее коррозионную стойкость в азотной кислоте, но снижает в серной и фосфорной кислотах. Поэтому для серной и фосфорной кислот применяются стали с большим запасом аустенитности. Например, сталь ОХ23Н28М2Т предназначена для работы в средах высокой агрессивности: в растворах серной кислоты низких концентраций ( до 20 %) при повышенной температуре, в растворах фосфорной кислоты, содержащей фтористые соединения, и др. Сталь ОХ23Н28МЗДЗТ предназначена для работы в растворах серной кислоты любой концентрации, кремнефтористоводородной кислоты и других фтористых соединений.  

Схема получения оттиска, а – нанесение растворителя на поверхность материала, используемого для получения оттиска. б – материал оттиска прижимают к подготовленному шлифу и некоторое время выдерживают до испарения растворителя и затвердевания материала. в – отделение оттиска от шлифа. 1 – пипетка с растворителем. 2 – материал оттиска. з – исследуемый металл. Р – сила, прижимающая материал оттиска к шлифу.  

Определение ферритной фазы следует производить объемным магнитным методом в соответствии с ГОСТ 9466 – 60 на ферритометре.  

Количество ферритной фазы в наплавленном металле определяется двумя методами – магнитными приборами ( ферритометрами), тарированными по эталонам с определенным содержанием феррита, и металлографическим методом. В таких случаях следует пользоваться объемными ферритометрами, которые показывают среднее содержание феррита в испытуемом образце.  

Количество ферритной фазы в наплавленном металле определяется двумя методами – магнитными приборами ( феррито метрами), тарированными по эталонам с определенным содержанием феррита, и металлографическим методом. В таких случаях следует пользоваться объемными ферритометрами, которые показывают среднее содержание феррита в испытуемом образце.  

Аустенитные нержавеющие стали: структура и свойства

Аустенитные нержавеющие стали – это коррозионностойкие хромоникелевые аустенитные стали, которые в мировой практике известны как стали типа 18-10. Это наименование им дает номинальное содержание в них 18 % хрома и 10 % никеля.

Хромоникелевые аустенитные стали в ГОСТ 5632-72

В ГОСТ 5632-72 хромоникелевые аустенитные стали представлены марками 12Х18Н9Т, 08Х18Н10Т, 12Х18Н10Т, 12Х18Н9, 17Х18Н9, 08Х18Н10, 03Х18Н11.

Роль хрома в аустенитных нержавеющих сталях

Основным элементом, дающим сталям типа 18-10 высокую коррозионную стойкость, является хром. Роль хрома заключается в том, что он обеспечивает способность стали к пассивации. Наличие в стали хрома в количестве 18 % делает ее стойкой во многих окислительных средах, в том числе в азотной кислоте в большом диапазоне, как по концентрации, так и по температуре.

Роль никеля в аустенитных нержавеющих сталях

Легирование никелем в количестве 9-12 % переводит сталь в аустенитный класс. Это обеспечивает стали высокую технологичность, в частности, повышение пластичности и снижение склонности к росту зерна, а также уникальные служебные свойства. Стали типа 18-10 широко применяют в качестве коррозионностойких, жаростойких, жаропрочных и криогенных материалов.

Фазовые превращения в аустенитных нержавеющих сталях

В хромоникелевых аустенитных сталях могут происходить следующие фазовые превращения:

  • выделение избыточных карбидных фаз и σ-фазы при нагреве в интервале в интервале 450-900 ºС;
  • образование в аустенитной основе δ-феррита при высокотемпературном нагреве;
  • образование α-фазы мартенситного типа при холодной пластической деформации или охлаждении ниже комнатной температуры.

Межкристаллитная коррозия в аустенитных нержавеющих сталях

Склонность стали к межкристаллитной коррозии проявляется в результате выделения карбидных фаз. Поэтому при оценке коррозионных свойств стали важнейшим фактором является термокинтетические параметры образования в ней карбидов.

Склонность к межкристаллитной коррозии закаленной стали типа 18-10 определяется, в первую очередь, концентрацией углерода в твердом растворе. Повышение содержания углерода расширяет температурный интервал склонности стали к межкристаллитной коррозии.

Сталь типа 18-10 при выдержке в интервале 750-800 ºС становится склонной к межкристаллитной коррозии:

  • при содержании углерода 0,084 % – уже в течение 1 минуты;
  • при содержании углерода 0,054 % – в течение 10 минут;
  • при содержании углерода 0,021 5 – через более чем 100 минут.

С уменьшением содержания углерода одновременно снижается температура, которая соответствует минимальной длительности изотермической выдержки до начала межкристаллитной коррозии.

Сварка аустенитных нержавеющих сталей

Необходимую степень стойкости стали против межкристаллитной коррозии, позволяющей выполнять сварку достаточно толстых сечений, обеспечивает содержание углерода в стали типа 18-10 не более 0,03 %.

Межкристаллитная коррозия при 500-600 ºС

Снижение содержания углерода даже до 0,006 % не обеспечивает полной стойкости сталей типа 18-10 к межкристаллитной коррозии при 500-600 ºС. Это представляет опасность при длительной службе металлоконструкций в этом интервале температур.

Стабилизация стали титаном и ниобием

При введении в хромоникелевую сталь типа 18-10 титана и ниобия, которые способствуют образования карбидов, меняются условия выделения карбидных фаз. При относительно низких температурах 450-700 ºС преимущественно выделяются карбиды типа Cr23C6, которые и дают склонность к межкристаллитной коррозии. При температурах выше 700 ºС преимущественно выделяются специальные карбиды типа TiC или NbC. При выделении только специальных карбидов склонности к межкристаллитной коррозии не возникает.

Металлургия

Fe – Cr Фазовая диаграмма

Чтобы считаться нержавеющей сталью, сплавы на основе Fe должны содержать не менее 10,5% Cr.

Фазовая диаграмма железо-хром показывает, что при содержании хрома примерно до 13% сталь претерпевает последовательные превращения при охлаждении из жидкой фазы из ферритной α-фазы в аустенитную γ-фазу и обратно в α. Когда присутствует некоторое количество углерода и если охлаждение происходит быстро, часть аустенита превращается в мартенсит. Закалка / отжиг преобразует мартенситную структуру в феррит и карбиды.

При содержании Cr выше примерно 17% сталь будет иметь ферритную структуру при всех температурах.

При содержании выше 25% Cr фаза сигма может проявляться в течение относительно длительного времени при температуре и вызывать охрупчивание при комнатной температуре.

Отечественные марки нержавеющей стали

Современный рынок предлагает разные марки нержавеющей стали для применения в разных отраслях промышленности.

06ХН28МДТ

Нержавейка 06ХН28МДТ применяется для изготовления сварного химического оборудования, работающего при температуре до 80 градусов в средах повышенной агрессивности.

Химический состав и расшифровка 06ХН28МДТ, %

Сплав может подвергаться ручной и автоматической сварке.

Импортный аналог 06ХН28МДТ — AISI 904L

08Х17Н13М2Т

Одним из популярных вариантов отечественной нержавеющей стали является марка 08Х17Н13М2Т. Состав данной марки нержавейки отличается повышенным содержанием молибдена. Именно этот элемент увеличивает антикоррозийные свойства и позволяет не воспринимать воздействие агрессивной среде. Помимо этого, молибден повышает устойчивость к высоким температурам. Нержавеющая сталь этой марки характеризуется высокой пластичностью, легко подвергается формовке и не обладает магнитными свойствами.

Область применения марки 08Х17Н13М2Т:

  1. Пищевая промышленность;
  2. Химическая промышленность;
  3. Изготовление медицинских изделий;
  4. Изготовление оборудования и инструментов.

Химический состав и расшифровка 08Х17Н13М2Т, %

  • C — до 0,08
  • Si — до 0,8
  • Mn — до 2
  • Ni — 12-14
  • S — до 0,02
  • P — до 0,035
  • Cr — 16-18
  • Mo — 2-3
  • Cu — до 0,3
  • (5 С — 0,7) Ti
  • Fe —

Импортный аналог 08Х17Н13М2Т — AISI 316Ti

08Х18Н9

Сталь 08Х18Н9 – аустенитная нержавеющая сталь с высоким содержанием хрома. Широко распространенная марка нержавеющей высоколегированной стали. Нержавейка характеризуется высокими показателями жаростойкости и антикоррозийности. Сплав легко поддается сварке. Применяется при производстве стальных фальцев, арматуры, теплообменного оборудования.

Химический состав и расшифровка 08Х18Н9, %

08Х18Н10

Марка нержавеющей стали 08Х18Н10 также относится к аустенитной группе сплавов. Характеризуется повышенной прочностью, пластичностью и стойкости к сверхвысоким температурам. Сплав не имеет магнитных свойств.

Область применения 08Х18Н10

  1. Строительство;
  2. Машиностроение;
  3. Пищевая промышленность;
  4. Горнодобывающая промышленность;
  5. Изготовление металлопроката, оборудования и арматуры.

Химический состав и расшифровка 08Х18Н10, %

Импортный аналог 08Х18Н10 — AISI 304

08Х18Н10Т

Аналогом предыдущей марки является 08Х18Н10Т. Высоколегированная сталь этой марки относится к аустенитной группе. Это коррозионностойкий сплав, и он характеризуется высокими показателями жаропрочности. Магнитные свойства отсутствуют. Применяется для изготовления фальцев, теплообменного оборудования, деталей печной арматуры.

Область применения 08Х18Н10Т

  1. Строительство;
  2. Машиностроение;
  3. Электроэнергетика;
  4. Пищевая, топливная, химическая промышленность.

Химический состав и расшифровка сплава 08Х18Н10Т, %

  • Cr — 17-19
  • Ni — 9-11
  • Mn — до 2
  • Si — до 0.8
  • Ti — 0.4-0.7
  • Cu — до 0.3
  • S — до 0.2
  • C — до 0.08
  • P — до 0.035
  • Fe —

Импортный аналог 08Х18Н10Т — AISI 321

08Х22Н6Т

Нержавеющая сталь 08Х22Н6Т относится к аустенитно-ферритной группе сплавов. Является антикоррозийныс сплавом, не теряет свои свойства даже при использовании в агрессивной среде. Область применения этой марки нержавейки обширна, из нее изготавливают сварное оборудование и различные сосуды.

Химический состав и расшифровка 08Х22Н6Т, %

  • Cr — 21-23
  • Si — до 0.8
  • Mn — до 0.8
  • Ni — до 0.8
  • Cu — до 0.3
  • C — до 0.08
  • P — до 0.035
  • S — до 0.025
  • (5 С — 0.65) Ti
  • остальное Fe

К нержавеющей стали марки 08Х22Н6Т можно применять любой вид сварки. Сварной шов также защищен от появления ржавчины и внешнего механического воздействия.

10Х17Н13М2Т

Сталь 10Х17Н13М2Т относится к группе аустенитных сплавов. В основном, эта марка применяется при изготовлении сварных конструкций, которые используются в агрессивной среде. Нержавеющая сталь сохраняет свои физические свойства и характеристики даже при высоких температурах (до 600 градусов).

Химический состав и расшифровка 10Х17Н13М2Т, %

  • Cr — 16-18
  • Ni — 12-14
  • Mo — 2-3
  • Mn — не более 2
  • Si — не более 0.8
  • Ti — 0.5-0.7
  • Cu — не более 0.3
  • P — не более 0.035
  • S — не более 0.02

К нержавеющей стали этой марки можно применять любые виды сварки: ручная, автоматическая электродуговая, газовая.

Импортный аналог 10Х17Н13М2Т — AISI 316Ti

Центральные особенности легирования и образования структуры

При рассмотрении различных типов стали во многом уделяется внимание процессу образования структуры. В данной разновидности стали структура дуплексная. И такая особенность способствует проявлению высокого уровня прочности, существенно расширяет область использования такого типа стали

И такая особенность способствует проявлению высокого уровня прочности, существенно расширяет область использования такого типа стали.

Как было отмечено выше, материал отличается повышенным уровнем защиты к образованию питтингов. Также он противостоит коррозийному растрескиванию и возникновению щелевой коррозии.

Легирование стали проводится с использованием различных типов элементов. При использовании таких элементов значительно повышаются характеристики использования. Легируют аустенитно-ферритные стали при помощи использования таких элементов, как:

  • хром;
  • азот;
  • вольфрам;
  • молибден.

Покупатели выбирают различные типы стали в зависимости от того, в какой области они будут использоваться в будущем. Такого рода продукция ориентирована на различные условия среды. В том числе с различным уровнем температурного воздействия, жесткости, содержания хлора. Все перечисленные варианты внешнего воздействия могут приводить к появлению коррозии

По этой причине покупателям стоит обращать особое внимание на разновидность при покупке. В таблице ниже мы привели данные по различным маркам стали и сопоставили для каждой марочный химический состав с указанием дополнительных примесей. Таблица 1

Химический состав аустенитно-ферритных сталей

Таблица 1. Химический состав аустенитно-ферритных сталей.

Марка сталиСSiMnCrNiMoTiSPпрочих элементов
03Х23Н6≤0,030≤0,041,0…2,022,0…24,05,3 …6,3≤0,020≤0,035Не регламентируется
03Х22Н6М2≤0,08≤0,821,0…23,05,5…6,51,8…2,5
08Х22Н6Т (ЭП 53)≤0,085,3…6,35,6…0,65≤0,025
12Х21Н5Т (ЭИ811)0,09…0,1420,0…22,04,8…5,80,28…0,50
08Х21Н6М2Т (ЭП 54)≤0,085,5…6,51,8…2,50,20. .0,40
08Х18Г8Н2Т (КО-3)7,0…9,017,0… 19,01,8…2,80,20. .0,50
03Х24Н6АМ3 (ЗИ 130)≤0,030≤0,4≤2,023,5 ..25,05,8 ..6,82,5 ..3,5не регламертируется≤0,0200,05 ..0,15N
DMV 18.5 (UNS S31500)1,4…2,01,2…2,018,0 .. 19,04,25 ..5,252,5 ..3,0≤0,030≤0,0300,05 ..0,10N
DMV 22.5 (UNS S31803)≤1,0≤2,021,0 ..23,04,50 ..6,502,5…3,5≤0,0200,06 ..0,20 N
SAF 2304 (UNS S32304)≤2,521,5…24,53,0 ..5,5≤0,040≤0,0400,05 ..0,20N
SAF 2205 (UNS S31803)≤2,04,5 ..6,53,0. .3,5≤0,015≤0,0350,14 ..0,20N
SAF 2507 (UNS S32750)≤0,5≤1,224,0…26,06,0…8,03,0. .5,0≤0,0300,24 ..0,32N
DMV 25.7N (UNS S32760)≤1,0≤1,03,0…4,0≤0,0100,20…0,30 N, 0,50…1,0W
SAF 2906 (UNS S32906)28…305…71,8…2,50,40N

На производстве каждая разновидность стали внимательно исследуется с применением специальных методик. Применяемые испытания прописываются в ГОСТ 9.912-89. В ходе исследования сталь помещается в различные среды, чтобы выявить, как на неё воздействуют агрессивные условия.

На данный момент, удалось проверить коррозийные свойства всех востребованных марок стали. Эти данные приведены в таблице ниже.

Таблица 2. Сведения о коррозионной стойкости аустенитно-ферритных сталей.

Марка сталиPRE (минимальный)Минимальная температура склонности к локальной коррозии, оСОбласть применения
питтингообразованиещелевая коррозия
03Х23Н622<10Химическая аппаратура. Заменитель стали 08Х18Н10Т
03Х22Н6М227Заменитель сталей 10Х17Н13М2Т и 10Х17Н13М3Т
08Х22Н6Т21Заменитель стали 08Х18Н10Т
12Х21Н5Т20
08Х21Н6М2Т26Заменитель сталей 10Х17Н13М2Т и 10Х17Н13М3Т
08Х18Г8Н2Т17Заменитель стали 08Х18Н10Т
03Х24Н6АМ32,53020Теплообменники с морской водой
DMV 18.528<10Заменитель хромоникелевых аустенитных сталей
DMV 22.5302010Теплообменники с технической пресной водой
SAF 230423<10Заменитель хромоникелевых аустенитных сталей
SAF 2205343020Теплообменники с технической пресной водой
SAF 2507388050Теплообменники с морской водой
DMV 25.7N
SAF 29064040

ОПРЕДЕЛЕНИЕ СОДЕРЖАНИЯ ФЕРРИТНОЙ ФАЗЫ МЕТАЛЛОГРАФИЧЕСКИМ МЕТОДОМ

2.1. На образцах, вырезанных вдоль волокна, изготовляют шлифы по плоскости, проходящей от центра до середины радиуса прутка (см. чертеж).

2.2. Микрошлиф подвергают электролитическому или химическому травлению. Электролитическое травление осуществляют в 10 %-ном водном растворе щавелевой кислоты при комнатной температуре и плотности тока 0,03-0,08 а/см в течение 20-40 с. Химическое травление осуществляют в реактиве следующего состава: 20 мл воды, 20 мл концентрированной соляной кислоты и 4 г медного купороса. Травление проводят при комнатной температуре в течение 8-10 с. Допускается травление в реактивах другого состава, обеспечивающих быстрое и качественное травление (участки не должны быть окисленными, а их границы должны быть тонкими и резкими).

2.3. Содержание СФФ в стали оценивают просмотром всей площади травленого микрошлифа.

2.4. На каждом шлифе при увеличении 280-320 и диаметре поля зрения микроскопа 0,38-0,43 мм определяют место с наибольшим содержанием СФФ, которое визуально оценивают в баллах или в процентах путем сравнения с фотоэталонами прилагаемой шкалы. Арбитражные определения содержания СФФ проводят по фотоснимку, сделанному при увеличении 280-320, с диаметром фотоотпечатка, соответственно равным 115-130 мм.

2.5. Прилагаемая к настоящему стандарту шкала для определения содержания СФФ — пятибалльная и имеет дополнительные фотоэталоны в 0,5; 1,5 и 2,5 балла. Шкала представлена двумя рядами фотоэталонов, различающимися по величине и количеству участков (см. вкладки).

2.4, 2.5 (Измененная редакция, Изм. N 2).

2.6. (Исключен, Изм. N 2).

2.7. Содержание СФФ в плавке оценивают двумя способами:

а) по максимальному баллу или проценту из оценок двух образцов;

б) по среднему баллу или проценту из оценок двух или более образцов. Способ оценки устанавливается стандартами и техническими условиями на продукцию.

2.8. Норма содержания СФФ в зависимости от назначения стали устанавливается стандартами и техническими условиями на продукцию. Если результаты испытаний неудовлетворительные, то повторно проводят испытания на образцах, отобранных от других штанг; при оценке плавки по п. 2.7а — на том же количестве, при оценке плавки по п. 2.7б — на удвоенном количестве образцов. Результаты повторных испытаний являются окончательными.

Наши события

16 августа 2021, 16:02 RusCable Insider #234 – Телеком шкафы NTSS, нереальный Lan HFLTx и сверхпроводящий кабель в трубе с водородом!

13 августа 2021, 12:09 Эфир RusCable Live от 13 августа. В гостях Эмилинк

12 августа 2021, 14:45 Большое видео о RusCable CLUB 2021!

9 августа 2021, 11:34 RusCable Insider #233 – Философия переработки VOLTA. Цветлит празднует 15 лет. Как энергопереход повлияет на цену меди?

3 августа 2021, 09:57 RusCable Insider #232 – Глобальный кабельный рынок. Алюминий для нацпроектов:соглашение АЭК и Русал. Продолжение Эксперт.Аналитики

30 июля 2021, 09:18 Гибридная транспортировка энергии с использованием сверхпроводящих кабелей

Количество – ферритная фаза

На рис. 166 показано влияние температуры деформации на изменение твердости и количества ферритной фазы трех сталей с различным содержанием никеля.  

Электроды, дающие наплавленный металл аустенит-ного типа, должны проходить проверку на количество ферритной фазы в наплавке. Наплавку производят при режимах, рекомендованных для электродов данного типа и диаметра, на пластину или трубу из соответствующей аустенитной нержавеющей стали.  

Электроды, дающие наплавленный металл аустенит-ного типа, должны проходить проверку на количество ферритной фазы в наплавке. Наплавку производят при режимах, рекомендованных для электродов данного типа и диаметра, на пластину или трубу из соответствующей аустенитной нержавеющей стали.  

Однако при сварке под флюсом некоторых марок жаропрочных сталей требование обеспечения в металле шва регламентированного количества ферритной фазы не всегда может быть достигнуто.  

Нержавеющие хромоникелевые стали в пределах химического состава наряду с основной структурой аустенита практически содержат некоторое количество ферритной фазы ( а-фазы) обычно оцениваемое баллами.  

Для устранения склонности к горячим трещинам и повышения стойкости против межкрлсталлитной коррозии необходимо содержание в наплавленном металле некоторого количества ферритной фазы.  

Для устранения склонности к горячим трещинам и повышения стойкости про-тин межкристаллитпой коррозии необходимо содержании в наплавленном металле некоторого количества ферритной фазы.  

Образцы на основе разработанного цементно-известково-зольного вяжущего после десяти дней воздействия агрессивной среды слегка потемнели, что объясняется присутствием некоторого количества ферритных фаз из портландцемента. Химическим анализом было зафиксировано наличие сероводорода по всему цементному камню, следы свободной и сульфатной серы.  

У нержавеющих сталей аустенитного класса типа Х18Н9Т при обычных методах разливки в изложницы, особенно в случае крупных слитков, наблюдается значительное увеличение количества ферритной фазы по мере приближения от периферии к центру слитка в связи с большей дендритной ликвацией при уменьшении скорости кристаллизации. Частицы ферритной фазы в осевой части слитка более крупные.  

Влияние концентрации азотной кислоты при 80 С на скорость коррозии сталей ( продолжительность испытания 100 ч. 1 – Х18Н9Т. 2 – ОХ22Н5Т. 3 – 1Х21Н5Т.| Зависимость механических свойств стали на основе Х21Т после оптимальной термической обработки от содержания никеля.  

Для сталей ОХ22Н5Т, ОХ18Г8Н2Т или других подобного типа характерным является прямая зависимость между повышением температуры нагрева металла и технологическими свойствами, что связано с увеличением при этих условиях количества ферритной фазы.  

Помимо прямых методов экспериментального определения сопротивления сплавов образованию горячих трещин, существуют косвенные: оценка по диаграммам состояния, основанная на представлении об увеличении склонности сплавов к образованию горячих трещин с расширением эффективного интервала кристаллизации ; по количеству ферритной фазы в аустенит-ных сталях в соответствии с диаграммами Шеффлера

При отсутствии сертификатов материалы можно использовать для работы только после их предварительной проверки; при этом проверяют химический состав сварочной проволоки и наплавленного металла, механические свойства сварного шва или наплавки, для аустенитных электродов, кроме того, – количество ферритной фазы и, при наличии требований, – склонность к межкристаллитной коррозии. Результаты проверки должны отвечать требованиям ГОСТ 9467 – 75; 10052 – 75; 2246 – – 70 или ТУ на сварочные материалы.  

При отсутствии сертификатов материалы можно использовать для работы только после их предварительной проверки; при этом проверяют химический состав сварочной проволоки и наплавленного металла, механические свойства сварного шва или наплавки, для аустенитных электродов, кроме того, – количество ферритной фазы и, при наличии требований, – склонность к межкристаллитной коррозии. Результаты проверки должны отвечать требованиям ГОСТ 9467 – 75; 10052 – 75; 2246 – 70 или ТУ на сварочные материалы.  

Получение строго дозированного количества феррита в сварных швах является достаточно сложной задачей. Количество ферритной фазы зависит от соотношения в стали ферритизаторов и аустениза-торов. Однако по допускам ГОСТа 2246 – 60 на содержание элементов это соотношение может изменяться в широких пределах.  

Применение нержавеющей стали

Раньше нержавейка применялась только на промышленных производствах, но по истечении времени нержавеющую сталь широко используют в разных сферах нашей жизни.

К основным сферам относятся:

  • Машиностроение;
  • Химическая промышленность;
  • Энергетика;
  • Целлюлозно-бумажная промышленность;
  • Пищевая промышленность;
  • Медицина;
  • Авиационно-космическая сфера;
  • Строительство.

Пищевая нержавейка

В пищевой промышленности применяется сталь нержавеющая пищевая — сплав с низким количеством химических добавок, так как оборудование не подвергается перепадам температур и агрессивным веществам. Для холодильных и морозильных агрегатов используют морозостойкие материалы.

Проверка ПРИБОРОВ

4.1. Перед началом работы новый прибор градуируется.

4.1а. Методику первичной и периодических поверок ферритометров (по ГОСТ 26364) устанавливают в соответствии с ГОСТ 8.518*.

_______

* С 1 января 2012 г. вводится в действие ГОСТ 8.518-2010.

(Введен дополнительно,Изм. № 2).

4.2. Градуировку прибора, т.е. получение градуировочной кривой зависимости показаний прибора от содержания СФФ, проводят по эталонным образцам с различным содержанием СФФ. Рекомендуется построение одной градуировочной кривой для прутков размером от 80 до 180 мм и второй – 180 мм и более.

4.3. Эталоны необходимо изготовлять из прутков контролируемой марки стали.

Допускается изготовление эталонов для стали марок 17Х18Н9, 12Х18Н9, 12Х18Н9Т, 04Х18Н10Т, 08Х18Н10, 04Х18Н10, 02Х18Н10, 06Х18Н11, 12Х18Н12Т, 08Х18Н12Т, 08Х18Н12Б, из стали марки 12Х18Н10Т.

(Измененная редакция Изм. № 1).

4.4. В качестве эталонов используют микрошлифы, вырезанные и изготовленные в соответствии с пп. 1.3 и 2.1. Одну из сторон микрошлифа, расположенную поперек оси прутка, приготовляют как макрошлиф в соответствии с п. 3.2.

4.5. Содержание СФФ в эталонах металлографическим методом определяют путем балльной оценки по методике, изложенной в разд. 2.

4.6. Содержание СФФ в эталонах магнитным методом определяют в соответствии с методикой, изложенной в разд. 3.

4.7. По данным, соответствующим эталонам с различным содержанием СФФ, строят градуировочную кривую прибора в координатах «показание прибора – балл СФФ». Каждые 5 – 6 точек кривой должны определяться не менее чем 10 результатами, полученными на разных эталонных образцах.

Примечание. Допускается градуировка прибора в координатах «показание прибора – объемное содержание СФФ». В этом случае содержание СФФ в эталонных образцах определяют одним из методов количественной металлографии, например точечным, и выражают в процентах.

4.8. Правильность работы прибора в течение эксплуатации и после ремонта проверяют периодически по двум-трем эталонным образцам с заранее фиксированными показаниями, соответствующими разным участкам градуировочной кривой прибора.

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Министерством черной металлургии СССР

2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ ПОСТАНОВЛЕНИЕМ Комитета стандартов, мер и измерительных приборов при Совете Министров СССР от 15.03.66

3. ВВЕДЕН ВПЕРВЫЕ

4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на которую дана ссылка

Номер пункта

4.1а

3.4, 4.1а

5. Ограничение срока действия снято по протоколу Межгосударственного совета по стандартизации, метрологии и сертификации (ИУС 2-93)

б. ИЗДАНИЕ (июнь 2011 г.) с Изменениями № 1, 2, утвержденными в октябре 1974 г., декабре 1987 г. (ИУС 10-74, 3-88)

1. Отбор образцов и вырезка шлифов. 1

2. Определение содержания металлографическим методом.. 2

3. Определение содержания ферритной фазы магнитным методом.. 3

4. Проверка приборов. 3

Свариваемость

Ферритные стали

Основные проблемы:

1) рост зерна в ЗТВ и охрупчивание, последующая термообработка не измельчает зерно и не устраняет хрупкость; 2) развитие межкристаллитной коррозии (МКК) при быстром охлаждении от температуры Т 900°С; МКК можно устранить отпуском при Т = 650 – 900°С или связыванием углерода в карбиды ниобия или титана; 3) охрупчивание в ЗТВ при повышенных тепературах вызывается образованием σ-фазы (интерметаллид Fe-Cr) в интервале температур Т = 650 — 850°С и развитие 475°С — ной хрупкости в интервале Т=450 — 525°С.

Эти явления усиливаются при увеличении содержания хрома в стали; 475°С — ная хрупкость устраняется путем закалки от Т = 700 — 800°С, а хрупкость от σ — фазы устраняют путем отжига при Т > 900°С.

Аустенитные стали

Основные проблемы:

1) образование горячих трещин в шве и околошовной зоне вызвано:

а) крупнокристаллитной и разнозернистой (строчечной) структурой; б) образованием легкоплавких эвтектик и ликвацией примесей; в) наличием легирующих элементов, вызывающих образование трещин (Si, Тi, Аl, В и др.); г) наличием легкоплавких примесей Pb, Sn, Bi, а также S и Р.

Основной способ предупреждения горячих трещин – измельчение структуры в шве за счет выделения высокотемпературных фаз δ-феррита в аустените шва, высокотемпературных карбидов, карбонитридов, боридной эвтектики.

2) развитие МКК в ЗТВ при нагреве в интервале Т = 650 — 750°С в связи с образованием карбидов хрома и снижением его содержания по границам зерен ниже 13%;

3) охрупчивание при образовании σ-фазы в интервале Т = 650 — 750°С, когда в стали имеется феррит.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий